
CS 6501: Advanced Topics in Cryptography Spring 2019

Problem Set 4

Due: April 12, 2019 at 5pm (submit via Gradescope) Instructor: David Wu

Instructions: You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp19/static/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
9YD875 to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Problem 1: Conceptual Questions [30 points]. For each of the following questions, a brief explanation
(i.e., 2-5 sentences) suffices.

(a) Let S be the set of languages that have perfectly sound NIZK proofs in the plain model (i.e., without
random oracles or a common reference string) with a deterministic zero-knowledge simulator. What
is the class of languages S?

(b) Consider a variant of Schnorr’s Σ-protocol for proving knowledge of discrete log (i.e., x ∈Zp : h = g x )
where the verifier samples the challenge uniformly from a set S ⊆Zp where |S| = poly(λ). Show that an
efficient prover who does not know the discrete log x can nevertheless convince the verifier to accept
with non-negligible probability. [Remark: This shows that the challenge space in Schnorr’s protocol
(and more generally, Σ-protocols) must be super-polynomial to provide negligible soundness error.]

(c) Consider a 4-round variant of the Σ-protocol for showing “knowledge of common discrete log” (i.e.,
showing that (g1, g2,h1,h2) satisfy h1 = g x

1 and h2 = g x
2 for some x ∈ Zp ), where the verifier first

commits to its challenge using a computationally-hiding commitment scheme. Is this proof system
sound?

(d) Consider a variant of Schnorr’s signature scheme where the challenge is derived by computing
c ← H (g ,h,m), where (g ,h) is the public key, m is the message, and H is the hash function (modeled
as a random oracle). In particular, the signer does not include its commitment u = g r as input to H .
Show that this variant is insecure (i.e., describe an attack that breaks unforgeability).

(e) In class, we saw that using the same randomness (i.e., the same value u = g r ) with Schnorr’s signature
scheme to sign two different messages leaks the signing key. Suppose instead the signer uses different,

but correlated, randomness r1 and r2. Namely, the signer samples r1
R←−Zp to sign the first message

m1 and then computes r2 ← a · r1 +b to sign the second message m2 6= m1. Suppose that a,b ∈Zp

are publicly known. Show that given m1, m2, their associated signatures σ1, σ2, and a, b, one can
recover the secret signing key. [Remark: This demonstrate that it is critical to derandomize signature
schemes based on Σ-protocols. Otherwise, security depends critically on the signer’s entropy source!]

(f) Suppose Alice (with secret input x ∈ {0,1}) and Bob (with secret input y ∈ {0,1}) use Yao’s protocol to
compute a function f (x, y) ∈ {0,1} for some function f : {0,1}× {0,1} → {0,1}. You may assume that
all parties are semi-honest and that both parties learn the output of the computation. Is it true that
under reasonable computational assumptions, Alice does not learn y at the end of the protocol (i.e.,
Alice’s probability of guessing Bob’s bit after running the protocol is at most 1/2+negl(λ))?
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Problem 2: Proofs on Committed Values [30 points]. Recall from Problem Set 2 that a Pedersen com-

mitment to a value x ∈Zp consists of a single group element σ= g x hr , where r
R←−Zp is the commitment

randomness and (g ,h) is part of the public parameters of the commitment scheme. In this problem,
we will develop Σ-protocols for proving various properties on committed values. For each problem, you
should argue completeness, honest-verifier zero-knowledge, and proof of knowledge for each of your
Σ-protocols (or cite the relevant analysis from the lecture notes). When analyzing the proof of knowledge
property, feel free to assume that the prover convinces the honest verifier with probability 1. In all cases,
you may assume that the prover knows the committed message and randomness. The prover should be
an efficient algorithm in all of your constructions.

(a) Give a Σ-protocol for showing that a commitment is to a binary value. In other words, describe a
Σ-protocol for the following language:

L= {
σ ∈G | ∃r ∈Zp :σ= hr or σ= g hr }

.

(b) Give a Σ-protocol for proving knowledge of an opening to a Pedersen commitment. Namely, describe
a Σ-protocol for the following language:

L= {
σ ∈G | ∃x,r ∈Zp :σ= g x hr }

.

(c) Give a Σ-protocol for proving that two Pedersen commitments are commitments to the same value.
Namely, describe a Σ-protocol for the following language:

L= {
σ1,σ2 ∈G | ∃x,r1,r2 ∈Zp :σ1 = g x hr1 and σ2 = g x hr2

}
.

(d) Using the protocols from Part (a) and Part (c), construct a Σ-protocol for showing that a committed
value is less than 2d (for a fixed and publicly-known parameter d). Namely, describe a Σ-protocol for
the following language:

L=
{
σ ∈G | ∃x,r ∈Zp :σ= g x hr and x < 2d .

}
The complexity of your Σ-protocol should be polynomial in d (and log p). When arguing zero-
knowledge, you may use (without proof) that the Pedersen commitment scheme is perfectly hiding
(shown in Problem Set 2). You only need to show knowledge against computationally-bounded
provers and moreover, you may assume that the discrete logarithm problem is hard in G. [Hint: Have
the prover start by constructing n = ⌈

log p
⌉

fresh Pedersen commitments to the bits of x.]

Problem 3: Precomputing Oblivious Transfers [15 points]. In this question, we will explore how to
precompute oblivious transfers (OT).

(a) Suppose that in a separate offline phase, a trusted party samples r0,r1
R←− {0,1}` and b

R←− {0,1}. It gives
(r0,r1) to the sender and (b,rb) to the receiver. The pair of value (r0,r1) and (b,rb) is referred to as an
“OT correlation.” Show that the sender and the receiver can use their OT correlation to implement
a two-round oblivious transfer protocol on `-bit messages. Show that your scheme is correct and
provides perfect sender security as well as perfect receiver security.

(b) Instead of relying on a trusted party to generate the OT correlations in the offline phase, show how
the sender and receiver can generate an OT correlation using an OT protocol. [Remark: Observe
that this OT protocol is input-independent, and thus can be done before any protocol execution.
Moreover, using a technique called OT extension, the sender and the receiver can precompute a large
number of OTs with very modest cost.]



Problem 4: Time Spent [5 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following optional questions to help us design future
problem sets. You do not need to answer these questions. However, we do encourage you to provide us
feedback on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?


