Probability and Statistics

Instructor: David Wu

Below is a summary of some basic facts from probability and statistics that we will use throughout this course. The presentation here is adapted from Appendix A. 2 of Arora and Barak, and we refer there for additional details as well as proofs of the different claims.

Probability theory. A finite probability space ${ }^{1}$ consists of a finite set S with a probability function $\operatorname{Pr}: S \rightarrow[0,1]$ such that $\sum_{s \in S} \operatorname{Pr}[s]=1$. The probability function defines a distribution \mathcal{D} over S, and we write $x \leftarrow \mathcal{D}$ to denote a draw from \mathcal{D} where each element $s \in S$ is sampled with probability $\operatorname{Pr}[s]$. We write Uniform (S) to denote the uniform distribution over S-namely, the distribution where $\operatorname{Pr}[s]=1 /|S|$ for all $s \in S$. We write $x \stackrel{R}{\leftarrow} S$ to denote sampling an element from Uniform(S).

Events. An event over a probability space S is defined to be a subset $E \subseteq S$. The probability that an event E occurs is defined to be $\operatorname{Pr}[E]=\sum_{x \in E} \operatorname{Pr}[x]$. Throughout this course, we will use the following simple bound on the probability that at least one event out of a collection of events occur:

Fact 1 (Union Bound). Let $E_{1}, \ldots, E_{n} \subseteq S$ be a finite collection of events over a probability space S. Then,

$$
\operatorname{Pr}\left[\bigcup_{i \in[n]} E_{i}\right] \leq \sum_{i \in[n]} \operatorname{Pr}\left[E_{i}\right] .
$$

k-Wise Independence. We say that two events E_{1} and E_{2} are independent if $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right]$. More generally, we say that a collection of events E_{1}, \ldots, E_{n} is k-wise independent if for every subset $T \subseteq[n]$ where $|T| \leq k$,

$$
\operatorname{Pr}\left[\bigcap_{i \in T} E_{i}\right]=\prod_{i \in T} \operatorname{Pr}\left[E_{i}\right] .
$$

We say that E_{1}, \ldots, E_{n} is mutually independent if it is n-wise independent.

Conditional probabilities. Given two events E_{1} and E_{2}, we define the conditional probability of E_{1} given E_{2} as

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]=\frac{\operatorname{Pr}\left[E_{1} \cap E_{2}\right]}{\operatorname{Pr}\left[E_{2}\right]} .
$$

Fact 2 (Law of Total Probability). Let F_{1}, \ldots, F_{n} be a collection of pairwise disjoint events over a probability space S where $\bigcup_{i \in[n]} F_{i}=S$. Then, for any event E over S,

$$
\operatorname{Pr}[E]=\sum_{i \in[n]} \operatorname{Pr}\left[E \cap F_{i}\right]=\sum_{i \in[n]} \operatorname{Pr}\left[E \mid F_{i}\right] \operatorname{Pr}\left[F_{i}\right] .
$$

[^0]Random variables. A random variable over a probability space S is a mapping $X: S \rightarrow \mathbb{R}$. Given a random variable $X: S \rightarrow T$ that maps onto a finite set T, we can associate a probability distribution over T where $\operatorname{Pr}[t]=\sum_{s \in S: X(s)=t} \operatorname{Pr}[s]$. We refer to this as the distribution of T.

Expectation. The expected value (or expectation) of a random variable $\mathbb{E}[X]$ is defined as $\mathbb{E}[X]=$ $\sum_{s \in S} X(s) \cdot \operatorname{Pr}[s]$.

Fact 3 (Linearity of Expectation). Let S be a probability space and $X, Y: S \rightarrow \mathbb{R}$ be random variables. We write $X+Y$ to denote the random variable that implements the mapping $s \mapsto X(s)+Y(s)$. Then, $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$.

Fact 4 (Markov's Inequality). Let $X: S \rightarrow \mathbb{R}$ be a non-negative random variable. Then,

$$
\operatorname{Pr}[X \geq k \cdot \mathbb{E}[X]] \leq 1 / k .
$$

Fact 5 (Chernoff Bounds). Let $X_{1}, \ldots, X_{n}: S \rightarrow\{0,1\}$ be a collection of mutually independent random variables. Let $X=\sum_{i \in[n]} X_{i}$ and $\mu=\mathbb{E}[X]=\sum_{i \in[n]} \mathbb{E}\left[X_{i}\right]$. Then for every $\delta>0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \text { and } \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
$$

In many scenarios, it will be easier to use the following special case:
Corollary 6 (Chernoff Bound). Under the same conditions as in Fact 5, for every constant c >0,

$$
\operatorname{Pr}[|X-\mu| \geq c \mu] \leq 2^{-\Omega(\mu)} .
$$

Statistical distance. Throughout this course, we will use the following notion of the statistical distance between two distributions:

Definition 7 (Statistical Distance). Let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be two probability distributions over a finite set S. Then, the statistical distance between $\mathcal{D}_{1}, \mathcal{D}_{2}$ is defined to be

$$
\begin{aligned}
\Delta\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right) & =\max _{T \subseteq S}\left|\operatorname{Pr}\left[x \leftarrow \mathcal{D}_{1}: x \in T\right]-\operatorname{Pr}\left[x \leftarrow \mathcal{D}_{2}: x \in T\right]\right| \\
& =\frac{1}{2} \sum_{s \in S}\left|\operatorname{Pr}\left[x \leftarrow \mathcal{D}_{1}: x=s\right]-\operatorname{Pr}\left[x \leftarrow \mathcal{D}_{2}: x=s\right]\right|
\end{aligned}
$$

We say that two distributions \mathcal{D}_{1} and \mathcal{D}_{2} are identical if $\Delta\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right)=0$. We denote this by writing $\mathcal{D}_{1} \equiv \mathcal{D}_{2}$.

[^0]: ${ }^{1}$ While we can also define infinite probability spaces, in this course, we will only work with finite probability spaces. Thus, in the following, we will always assume a finite probability space.

