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Probability and Statistics

Instructor: David Wu

Below is a summary of some basic facts from probability and statistics that we will use throughout this
course. The presentation here is adapted from Appendix A.2 of Arora and Barak, and we refer there for
additional details as well as proofs of the different claims.

Probability theory. A finite probability space1 consists of a finite set S with a probability function
Pr: S → [0,1] such that

∑
s∈S Pr[s] = 1. The probability function defines a distribution D over S, and we

write x ←D to denote a draw from D where each element s ∈ S is sampled with probability Pr[s]. We write
Uniform(S) to denote the uniform distribution over S—namely, the distribution where Pr[s] = 1/ |S| for all

s ∈ S. We write x
R←− S to denote sampling an element from Uniform(S).

Events. An event over a probability space S is defined to be a subset E ⊆ S. The probability that an event
E occurs is defined to be Pr[E ] = ∑

x∈E Pr[x]. Throughout this course, we will use the following simple
bound on the probability that at least one event out of a collection of events occur:

Fact 1 (Union Bound). Let E1, . . . ,En ⊆ S be a finite collection of events over a probability space S. Then,

Pr

[ ⋃
i∈[n]

Ei

]
≤ ∑

i∈[n]
Pr[Ei ].

k-Wise Independence. We say that two events E1 and E2 are independent if Pr[E1 ∩E2] = Pr[E1]Pr[E2].
More generally, we say that a collection of events E1, . . . ,En is k-wise independent if for every subset
T ⊆ [n] where |T | ≤ k,

Pr

[⋂
i∈T

Ei

]
= ∏

i∈T
Pr[Ei ].

We say that E1, . . . ,En is mutually independent if it is n-wise independent.

Conditional probabilities. Given two events E1 and E2, we define the conditional probability of E1 given
E2 as

Pr[E1 | E2] = Pr[E1 ∩E2]

Pr[E2]
.

Fact 2 (Law of Total Probability). Let F1, . . . ,Fn be a collection of pairwise disjoint events over a probability
space S where

⋃
i∈[n] Fi = S. Then, for any event E over S,

Pr[E ] = ∑
i∈[n]

Pr[E ∩Fi ] = ∑
i∈[n]

Pr[E | Fi ]Pr[Fi ].

1While we can also define infinite probability spaces, in this course, we will only work with finite probability spaces. Thus, in the
following, we will always assume a finite probability space.

http://theory.cs.princeton.edu/complexity/


Random variables. A random variable over a probability space S is a mapping X : S → R. Given a
random variable X : S → T that maps onto a finite set T , we can associate a probability distribution over
T where Pr[t ] =∑

s∈S:X (s)=t Pr[s]. We refer to this as the distribution of T .

Expectation. The expected value (or expectation) of a random variable E[X ] is defined as E[X ] =∑
s∈S X (s) ·Pr[s].

Fact 3 (Linearity of Expectation). Let S be a probability space and X ,Y : S → R be random variables.
We write X +Y to denote the random variable that implements the mapping s 7→ X (s)+Y (s). Then,
E[X +Y ] = E[X ]+E[Y ].

Fact 4 (Markov’s Inequality). Let X : S →R be a non-negative random variable. Then,

Pr[X ≥ k ·E[X ]] ≤ 1/k.

Fact 5 (Chernoff Bounds). Let X1, . . . , Xn : S → {0,1} be a collection of mutually independent random
variables. Let X =∑

i∈[n] Xi and µ= E[X ] =∑
i∈[n]E[Xi ]. Then for every δ> 0,

Pr
[

X ≥ (1+δ)µ
]≤ (

eδ

(1+δ)1+δ

)µ
and Pr

[
X ≤ (1−δ)µ

]≤ (
e−δ

(1−δ)(1−δ)

)µ
.

In many scenarios, it will be easier to use the following special case:

Corollary 6 (Chernoff Bound). Under the same conditions as in Fact 5, for every constant c > 0,

Pr
[∣∣X −µ

∣∣≥ cµ
]≤ 2−Ω(µ).

Statistical distance. Throughout this course, we will use the following notion of the statistical distance
between two distributions:

Definition 7 (Statistical Distance). Let D1,D2 be two probability distributions over a finite set S. Then,
the statistical distance between D1,D2 is defined to be

∆(D1,D2) = max
T⊆S

|Pr[x ←D1 : x ∈ T ]−Pr[x ←D2 : x ∈ T ]|

= 1

2

∑
s∈S

|Pr[x ←D1 : x = s]−Pr[x ←D2 : x = s]|

We say that two distributions D1 and D2 are identical if ∆(D1,D2) = 0. We denote this by writing D1 ≡D2.


