CS 6501 Week 10: Multiparty Computation
So far, we have looked at two-party computation. What if we have more than two parties?
Many protocols for general "multiparty computation (MPC)" - in this coarse, we will focus on MPC based on "secret sharing"
Secret sharing: Suppose we have a secret and want to distribute it among n parties such that any t of them can suberepently recover the secret and any ($t-1$) subset cannot [eg., Band of directors at Cexa-Clor want to protect Coca-Cola recce]

Definition. A (t, n)-secret sharing scheme over a message space M and shave space S consists of two efficient algorithms:
Share: $m \rightarrow S^{n}$
Reconstruct: $S^{t} \rightarrow M$
with the following properties:
Correctness: Any t shares can be used to reconstruct m :

$$
\begin{aligned}
& \forall m \in M:\left(s_{1}, \ldots, s_{n}\right) \leftarrow \text { Share }(m) \\
& \forall S \subseteq\left\{s_{1}, \ldots, s_{n}\right\} \text { where }|s|=t: \text { Reconstruct }(s)=m
\end{aligned}
$$

Security: Need at least t shares to learn the eccret
$\forall m_{0}, m_{1} \in M, \forall I \leq[n]$ where $|I|<t$:

$$
\left\{\left(s_{1}, \ldots, s_{n}\right) \leftarrow \text { Share }\left(m_{0}\right): \text { si for all } i \in I\right\} \equiv\left\{\left(s_{1}, \ldots, s_{n}\right) \leftarrow \text { Share }\left(m_{1}\right): \text { si for all } i \in I\right\}
$$

τ can relax to computational indistinguisthablity (in which owe, Share take in additional security parameter)
any ring will work (p need not be prime)
Examples: Additive secret sharing [n out of n]: $m=\mathbb{Z}_{p}, S=\mathbb{Z}_{p}^{n}$

- Share (m): Sample $r_{1}, \ldots, r_{n-1} \leftarrow \mathbb{Z}_{p}$ and et $r_{n}=m=\sum_{i=1}^{n-1} r_{i} \in \mathbb{Z}_{p}$

Provides information- theoretic Security - check this!

- Reconstruct $\left(r_{1}, \ldots, r_{n}\right):$ Output $\sum_{i=1}^{n} r_{i}$

Combinatorial secret sharing [t out of n]: Will use a symmetric encoption scheme over $\{0,1\}^{*}$ (eeg. AES-CTR)

- Share (m) : Sample n keys k_{1}, \ldots, k_{n} for encryption scheme

For every t-subset $\left\{i_{1}, \ldots, i t\right\} \leq\{n]$, encrypt m using $k_{i_{1}}, \ldots, k_{i_{t}}\left(\operatorname{eg} . \operatorname{En}\left(k_{i_{1}}, E_{n}\left(k_{i_{2}}, \cdots, E_{n c}\left(k_{i_{i}}, m\right) \cdots 1\right)\right)\right.$
Let $\{c+\}$ be the collection of ippertects
Output shares $\left(\left(k_{1},\{c+\}\right), \ldots,\left(k_{n},\{c+\}\right)\right)$
relies on computational assumptions

- Reconstruct $\left(\left(k_{1},\{c+\}\right), \ldots\left(k_{t},\{c+\}\right)\right):$ by construction, there is ore $c t \in\{c+\}$ enaypted under k_{1}, \ldots, k_{t}, so decappt accordingly

Shamir secret sharing [t out of $n]: M=\mathbb{F}_{p}, S=\mathbb{F}_{p}^{n}$ (require $p>n$)
beautiful construction based on polynomials (very useful mechanism for sharing data)
Key idea: Any d points uniquely define a degree-(d-1) polynomial over a field

- egg. 2 points define a line, 3 points define of parabola, etc.
- given d points, can efficiently obtain entire polynomial [Lagrange interpolation]
- Share (m) : Choose $y_{1}, \ldots, y_{t-1} \stackrel{R}{\leftarrow} \mathbb{F}_{p}$

Let $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ be the unique polynomial of degree $t-1$
$f(0)=m$ and $f(i)=y_{i} \quad \forall i \in[t-1] \quad$ [t points uniquely define the polynomial f]
Output shares $(i, f(i)) \forall i \in[n] \quad$ Each share is just 2 field elements lindependent of threshold t or \# parties n)

- Reconstruct $\left.\left(i_{1}, y_{1}\right), \ldots,\left(i t, y_{t}\right)\right):$ Interpolate the unique polynomial f of degree $(t-1)$ defined by the points $\left(i_{1}, y_{1}\right), \ldots,\left(i_{t}, y_{t}\right)$

Output $f(0)$

A little more detail... how to construct the polynomial f. Lagrange interpolation.
Let $\left(x_{0}, y_{0}\right), \ldots,\left(x_{t}, y_{t}\right)$ be a collection of $t+1$ points. To find the polynomial f of degree t that interpolates these points, we can write

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t} \text {, where } a_{0}, \ldots, a_{t} \in \mathbb{F}_{p}
$$

Then, we can write

$$
\begin{aligned}
& f\left(x_{0}\right)=a_{0}+a_{1} x_{0}+\cdots+a_{t} x^{t}=y_{0} \\
& \vdots \\
& f\left(x_{t}\right)=a_{0}+a_{1} x_{t}+\cdots+a_{t} x_{t}^{t}=y_{t}
\end{aligned} \quad \Longrightarrow \underbrace{\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{t} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{t} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{t} & x_{t}^{2} & \cdots & x_{t}^{t}
\end{array}\right]}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{t}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{t}
\end{array}\right]
$$

"Vandermonde matrix" of dimension $t+1$

Interpolating a polynomial over \mathbb{F}_{p} just corresponds to solving a linear system over \mathbb{F}_{p}. A unique solution exists as long as the Vandermonde matrix is invertible. It turns out that you can show (vice linear algebra) that

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{t} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{t} & x_{t}^{2} & \cdots & x_{t}^{t}
\end{array}\right)=\prod \begin{aligned}
& 0 \leqslant i<j \leqslant t
\end{aligned}\left(x_{j}-x_{i}\right) \quad\left[\begin{array}{l}
\text { If } x_{i}, x_{j} \text { are all distinct, and we work over a finite } \\
\text { field (e.g.i, there are no nontrivial divisors of } 0 \text {), then } \\
\text { this matrix is invertible and we can interpolate efficiently }
\end{array}\right]
$$

Let us now analyze the properties of Shamir's secret shaving scheme:
Correctness: Follows by uniqueness of interpolating polynomial (e.g.i, t shares uniquely define a polpuamial of degree $t-1$)

Security: Given any subset of $(t-1)$ shares $\left(i_{1}, y_{1}\right), \ldots,\left(i_{t-1}, y_{i-1}\right)$, and any message $m \in \mathbb{F}_{p}$, there is a unique polynomial f of degree $t-1$ where

$$
f\left(i_{1}\right)=y_{1}, \ldots, f\left(i_{t-1}\right)=y_{i-1} \text { and } f(0)=m
$$

Thus, any $(t-1)$ shares can be consistent with secret-sharing of any message $m \Rightarrow$ information - theoretic security

Efficiency: Both share-generation and share reconstruction consist of polynomial evaluation and interpolation, both of which are efficiently computable (see above)

Shamir secret sharing is a linear secret sharing scheme: namely share-reconstruction is a linear function of the shares
-Suppose we have shares $\left(i, y_{1}\right) \ldots\left(i t, y_{t}\right)$ from a t-out-of- n secret sharing of a message m.

- Then, we can recover polynomial f of degree $t-1$ that interpolates these points by solving the Vandermonde system

$$
V a=y \quad \Rightarrow a=V^{-1} y \in \mathbb{F}_{p}^{t} \quad\left[f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t}\right]
$$

where V is the Vandermonde matrix (corresponding to share coefficients i_{1}, \ldots, i_{t}), a is the vector of coefficients of f, and y is the vector of values $\left(y_{1}, \ldots, y_{t}\right)$.

- Given coefficients a, notice that $m=f(0)=a_{0}=e_{1}^{\top} a$ where $e_{1}^{\top}=[1,0,0, \ldots, 0]$ is the first standard basis vector. This means that we can write

$$
m=e_{1}^{T} a=\left(e_{1}^{T} V^{-1}\right) y
$$

Oftentimes, we write $e_{1}^{\top} V^{-1}=\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{t}\right]$, in which case

$$
m=\sum_{i \in[t]} \lambda_{i} y_{i}
$$

which is a linear function of the shares of m.

Linear secret sharing is very useful for building threshold cryptosystems. Here, we describe one example with threshold BLS signatures:

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}\right): k \leftarrow \mathbb{Z}_{p} \quad v k:\left(g, g^{k}\right) \\
& \\
& \quad \text { sk:k} \\
& \operatorname{Sign}(s k, m): \text { Output } \sigma \leftarrow H(m)^{k} \\
& \operatorname{Verify}(v k, m, \sigma): \text { Output } 1 \text { if } e(g, \sigma)=e\left(g^{k}, H(m)\right) .
\end{aligned}
$$

Suppose we apply a t-out-of-n secret sharing to the signing key k. Using Shamir secret sharing, this yields shares $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
this is itself a BLS signature, just
 with respect to the verification bey $g^{y:}$

Suppose one has t shares of a signature on m :

$$
\left(x_{i_{1}}, H(m)^{y_{i_{1}}}\right), \ldots\left(x_{i_{t}}, H(m)^{y_{i_{t}}}\right)
$$

Shamir secret sharing has a linear reconstruction procedure, so given $x_{i}, \ldots, x_{i t}$, we can write the signing key as

$$
k=e_{1}^{\top} V_{x} y=\sum_{j \in(t)} \lambda_{j} y_{i j}
$$

where V_{x} is the Vandermonde matrix associated with $\left(x_{i}, \ldots, x_{i t}\right)$ and $y=\left(y_{i 1}, \ldots, y_{i t}\right)$. Importantly, the Lagrange coefficients λ_{j} only depend on the x-coordinates. Thus, given $\left(x_{i_{1}}, H(m)^{y_{i_{1}}}\right), \ldots,\left(x_{i_{t}}, H(m)^{y_{i t}}\right)$, one can compute

$$
\prod_{j \in[t]}\left[H(m)^{y_{i j}}\right]^{\lambda_{j}}=H(m) \sum_{j \in(t)]} \lambda_{j} y_{i j}=H(m)^{k}
$$

which is a BLS signature on the message m under the signing key k.

Computing on secret-shared data: Another paradigm for 2PC (and MPC) - better-suited for evaluating arithmetic circuits
Alice's share
Alice: Chooses $r_{A B}, r_{A C} \stackrel{R}{=} \mathbb{F}_{P}$ and sends $r_{A B}$ to Bob, $r_{A C}$ to Charles
\mapsto Observation: $\left(x_{A}-r_{A B}-r_{A C}, r_{A B}, r_{A C}\right)$ is additive
secret sharing of Alice's input $x_{A}-$ Bobs share
We will write $\left[X_{A}\right]$ to denote additive secret sharing of X_{A}

$$
f\left(x_{A}, x_{B}, x_{C}\right)=x_{A}+x_{B}+x_{C}
$$

$$
\text { Charlie }\left(x_{c}\right)
$$

Computing on shares: Given shares of x_{A} and x_{B},

$$
\left[x_{A}+x_{B}\right]=\left[x_{A}\right]+\left[x_{B}\right] \quad \text { (component-wise addition) }
$$

Specifically if $\left[x_{A}\right]=\left(x_{A, 1}, x_{A, 2}, x_{A, 3}\right)$ where $x_{A, 1}+x_{A, 2}+x_{A, S}=x_{A} \in \mathbb{T}_{p}$

$$
\left[x_{B}\right]=\left(x_{B, 1}, x_{B, 2}, x_{B, 3}\right) \text { where } x_{B, 1}+x_{B, 2}+x_{B, 3}=x_{B} \in \mathbb{F}_{p}
$$

then $\left[x_{A}+x_{B}\right]=\left(x_{A, 1}+x_{B, 1}, x_{A, 2}+x_{B, 2}, x_{A, 3}+x_{B, 3}\right)$ and $\left(x_{A, 1}+x_{B, 1}\right)+\left(x_{A, 2}+x_{B, 2}\right)+\left(x_{A, 3}+x_{B, 3}\right)=x_{A}+x_{B} \in \mathbb{F}_{P}$
More generally: 1. Share addition: $\left[x_{A}+x_{B}\right]=\left[x_{A}\right]+\left[x_{B}\right]$
2 Scalar multiplication: $\left[k x_{A}\right]=k \cdot\left[x_{A}\right]$
3. Addition by constant: $\left[x_{A}+k\right]=\left(x_{A, 1}+k, x_{A, 2}, x_{A, 3}\right)$

Multiplication of secret-shared values is more challenging. We will first assume that parties have a "hint" - a secret sharing of a random multiplication tuple (idea due to Bearer - "Beaver multricication triple"):

Suppose parties have a secret-sharing of a random product: $[a],[b],[c]$ where $c=a b \in \mathbb{T} p$
$a, b \mathcal{E}_{\mathbb{E} p}(a, b$ are uniformly radom values)
Then, given $[x]$ and $[y]$, we proceed as follows:

1. Each party computes $[x-a]$ and publishes their share of $x-a$
2. Each party computes $[y-b]$ and publishes this share of $y-b$
3. $A(l)$ of the parties compute non-interactively:

$$
[z]=[c]+[x](y-b)+[y](x-a)-(x-a)(y-b)
$$

Claim: $z=x y$. Follows by following calculation:

$$
\begin{aligned}
z & =c+x(y-b)+y(x-a)-(x-a)(y-b) \\
& =a b+x y-b x+x y y-a y-x y+b x+a y-a b \\
& =x y
\end{aligned}
$$

Observe: Parties only see $x-a$ and $y-b$ in this protocol. Since a, b are uniformly random and unknown to the parties, $x-a$ and y-b is a one-time pad encryption of x and y. Resulting protocol provides information -theoretic privacy for parts' inputs.

Assuming we have access to Beaver multiplication triples, we can evaluate any arithmetic circuit as follows (among n-parties):

1. Every party secret shares their input with every other party
2. For each addition gate in the avruit, parties locally compute on their shares
3. For each multiplication gate in the circuit, parties run Bearer's multiplication protocol (using different triple each time !)
4. Every party publishes share of the output; parties run share reduction to obtain output.

Where do Beaver triples come from?

- Generated by a trusted dealer (say, implemented using secure hardware like Intel SGX)
\rightarrow Notice that these are random multiplication triples and imput-independent (the dealer does not see any party's secret inputs)
- Using oblivious transfers. Suppose the field is polynomial size (egg. $p=p o l y(\lambda)$). We can use a 1 -out-of- p^{2} OT to generate a multiplication triple.
sender

$$
[a]_{1},[b]_{1},[c]_{1} \leftarrow \mathbb{F}_{p}
$$

receives

$$
[a]_{2},[b]_{2} \stackrel{R}{-} \mathbb{F}_{p}
$$

for $i, j \in \mathbb{F}_{p}$, let

$$
m_{i, j}=\left([a]_{1}+i\right)\left([b]_{1}+j\right)-[c]_{1} \in \mathbb{F}_{p}
$$

$\stackrel{\text { OT for message }\left([a]_{2},[b]_{2}\right)}{ }$

By construction, receiver's message is $\left([a]_{1}+[a]_{2}\right)\left(\left[b_{1}\right]+\left[b_{2}\right]\right)-\left[c_{1}\right] \in \mathbb{F}_{p}$ and so $[a],[b],[c]$ is precisely a Beaver multiplication triple. Nest, 1-out-of $-p^{2}$ OT can be implemented using $O(\log p)$ 1-out-of-2 OTS (via a tree-based construction), but communication grows with $O\left(p^{2}\right)$.
\rightarrow Another method is to use Yous's garbled circuits to generate Beaver triple. Input is $[a]_{1},[b]_{1},[c]$, and $[a]_{2},[b]_{2}$, and output is $[c]_{2}$. Communication now grows with polylog (p), so this method works even for superpolysomial p.

- Using somewhat homomorphic encryption:
sender
receiver

$$
\begin{aligned}
& {[a]_{1}[b]_{1} \stackrel{R}{\leftarrow} \mathbb{F}_{p}} \\
& \operatorname{Enc}(p k,[a]) \\
& \text { Pk, Enc }\left(p k_{1}[b],\right) \longrightarrow \\
& {[a]_{2},[b]_{2},[c]_{2} \stackrel{R}{\leftrightarrow} \pi_{p}} \\
& \longleftarrow \operatorname{Enc}\left(p k_{1}\left([a]_{1}+[a]_{2}\right)\left([b]_{1}+[b]_{2}\right)-[c]_{2}\right)
\end{aligned}
$$

decrypt to obtain $[c]$,
In all these cases, Beaver triples can be generated in a separate "preprocessing" phase (before the parties cone online and the inputs to the computation are know). MPC with preprocessing model.
\rightarrow We can similarly preprocess oblivious transfers to reduce its online cost (see HW4).

MPC protocol comparison:

* Can be improved further!
* leverages several optimizations
(haff-gates + free XOR)

Main takeaway: OT is sufficient for n-party MPC (with security against all-but-1 corrupted parties)
\rightarrow ie, use OT to generate Bearer triples and compute on secret-shared values
"Anything that can be computed with a trusted party can be computed without, even if all but a single party is controlled by an adversary" [assuming OT]

Handing malicious parties: Protocols described so for are in the semi-hovest model (parties agree to follow the protocol as written). Many approaches to support malicious parties:

- Develop new protocols tailored for malicious security
- The GMW approach: take any protocol with security against semithonest adversaries and hare parties attach a $2 e n 0$-knowledge proof to each message to prove that they are following the protocol specification
\rightarrow Theoretical view : Malicious security is no more difficult to achieve than semi-honest seurity
\longrightarrow Practice: Generic ZKPs are quite expensive, so oftentimes, other techniques will enable better efficiency

MPC without inptogaphie assumptions? Information-theoretic MPC is also possible if we assume that there are sufficiently many honest parties.

- Honest majority: Security against semi-honest adversaries
- Honest supermajeity (2/3 honest): security against malicious adversaries

Advantages: no cryptographic assumptions needed!
oftentimes very efficient since there are no cryptographic operations
Disadvantage: stronger trust assumption (need majority of parties fo be honest)
\longrightarrow potentially quite reasonable in large-scale protocols (eeg., blockchoins/Bitcoin make similar assumption on distribution of computational power)

