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far in this course : Foundations of modern cryptography , pairing- based cryptography , zero - knowledge proof systems and cryptographic

protocols

Final major topic in this course :

post
- quantum cryptography and the next generation of cryptography

We will not have time to cover quantum computing in this course
.

We will just state the implications :

Grogorithm : Given black - box access to a function f : ( N ] → {0,13
,
Grover's algorithm finds an x E CN] such that

f- (x ) = 1 by making 0 (TN ) queries to f
.

"

Searching an unsorted database of size N in time 0 (Tn )
.

"

-

Classically : Searching an unstructured database of size N
requires time ACN ) - cannot do better than a linear

scan .

-

Quantum: Grover's algorithm is tight for unstructured search
. Any quantum algorithm for the unstructured search

problem requires making ITN ) queries ( to the function ) database) .

⇒ Quantum computes provide a quadratic speedup for unstructured search , and more broadly, function

inversion
.

IMplicationsinc.ir#ography : Consider a one-way
function over a 128 - bit domain

.
The task of inverting a one-way function is to

find X E {0,13128 such that f- G) =y for some fixed target value f
.

Exhaustive search would take

time 22128
on a classical computer , but using Grover's algorithm, can perform in time = 12728=26.4

⇒ For symmetric cryptography , need to doubt key - sizes to maintain same level of security
(unless there are new quantum

attacks on the underlying construction itself
.

⇒ Use AES - 256 instead of AES - 128 (need a significant change ! )

Similar algorithm can be applied to obtain a quantum collision -

finding algorithm that runs in time FN where N is the

size of the domain (
compare to TN for the best classic algorithm)

↳ Instead of using SHA - 256
, use SHA - 384 (host a significant change)

↳ The quantum algorithm require a large amount of space , so not clear that this is a significant threat
,
but even if it were

,

using hash functions with 384 - bits of output suffices for
security

Maintaleaway : symmetric cryptography mostly unaffected by quantum computers
~

generally just require a modest increase in key size

↳
ecg . . symmetric encryption , MAC,s , authenticated encryption



Story more complicated for public-key primitives
:

- Simon 's algorithm and Shor 's algorithm provide polynomial-time algorithms for solving discrete log (in any group
with an efficiently -

computable group operation
) and for factoring

- Both algorithms rely on period finding ( and more broadly ,
on solving the hidden subgroup problem)

Intuition for discrete log algorithm ( as a period finding problem
) :

- Let (g , h=gd ) be the discrete log instance in a group
of prime order p

- Let f : Zp x Zp
→ G be the function

f- ( x. yl =g×h
- Y

-

By construction
,

fcxta
, y ti ) =

g
" -

th - T
- '

=

g
" high - '

=

g th
- d

= f- ( x , y)
- Thus

,
the element ( d ,

- l) is the period of f
,

so using Shor's algorithm, we can efficient compute k
,

- t ) from Cg,
h)

,

which yields the discrete log of h

Thus , if large scale quantum computers come online
, we will need new cryptographic assumptions for our public

- key primitives
↳ All the algebraic assumptions we have considered so far (e.g. , discrete log , factoring , pairings) are broken

tastiesthist ? - Lots of
progress

in building quantum computers recently by both academia and industry (e.g , see initiatives

by Google , IBM
,
etc

.
)

-

To run Shor 's algorithm to factor a 2048 - bit RSA modulus
,

estimated to need a quantum computer with

= 10000 logical qubits (analog of a bit in classical computers)

↳ With
quantum error correction

,
this requires 7 10 million physical qubits to realize

↳
Edgy : machines with los of physical qubits , so still

very
far from being able to run Shor 's

algorithm
-

Optimistic estimate : At least 20 -30 years away
(and some say never . . .

)

Stow ? Quantum computers would break existing key - exchange and signature schemes

-

Signatures : Future adversaries would be able to forge signatures under today's public keys ,
so if quantum computers come online

,
we

can switch to and only use post - quantum schemes

-Key-Exchang- : Future adversaries can break confidentiality of today's messages ( i.e. , we lose forward
secrecy)

- this is probiotic in

many scenarios ( e.g. , businesses want trade secrets to remain hidden for 50 years)

Reasons to study post
- quantum cryptography :

I . Protect confidentiality of today 's computations against potential future threat

2. Standards take a long time to develop and deploy ,
so should start now

↳ NIST has initiated a multi-year initiative to develop and standardize post
- quantum key - exchange and signatures

( currently in 2nd year
of 6 - year initiative )

↳ Google recently piloted an experiment involving post - quantum key exchange in Chrome (using a
" best of both worlds

"

approach where key derived from mix of classic key exchange and post
- quantum key exchange)

3. New kinds of mathematical structures and assumptions
-

opportunity to build cryptography up
from scratch again!



fandidatesfor_pootquantumh@sa.m any
classes of assumptions, many

different tradeoffs
,
will

survey several below :

- taskedcryptography : - Use hash functions (symmetric primitives)

- Suffices for signatures ,
but not for key exchange (black box separations)

-

Assumption seems very safe ( not based on algebraic / structured hardness assumptions)
-

Signatures built from hash functions are very large leg. ,
SPHING signatures are 40 KB long )

↳ Could be good choice where large signatures are acceptable leg, signing software updates)

-

Isogeny-basedcryography : - More recent class of cryptographic assumptions based on hard problems related to computing mappings

bet elliptic curves

- Gives a simple key - exchange protocol that is analogous to Diffie-Hellman and has compact communication

( eg. , a few hundred bytes)
-

Signatures also possible, but longer compared to Schnorr ( ECDSA ,
shorter compared to hash - based

and lattices (Open : Schnorr - style signatures from iso genies
? ]

-

Relatively new type of hardness assumption - needs more cryptanalysis

- Has interesting algebraic structure ( can be viewed as computing a hard ←paEn ) and provides

promising avenues for developing new types of cryptographic primitives [ lots of interesting research problems
!)

-

Co#edcryp#phy :
- Based on hard problems from coding theory (e.g ,

hardness in decoding a random linear code)
- Dates back to the late 19705 (e.g , MoEliece family of cryptographic schemes)
-

Many variants (eg. , using codes with additional algebraic structure are broken
,
but original candidate

by Mc Elie see remains a plausible candidate

-

Schemes have large parameter (key - sizes ) - needed to resist best - known attacks

⇒

Muftiv-ariutecryptograph.fi
- Based on conjectured hardness of solving systems of multivariate polynomials over finite fields

-

Many schemes based on these types of assumptions have been broken
,
and to date, there has been

(relatively) limited study on these assumptions
-

Typically schemes have large parameter sizes , so there is no clear advantage compared to many of the other

leading contenders

Ourtocus : lattice - based cryptography

Before defining lattices
,

a few motivating reasons to study lattices (beyond its conjectured post
- quantum resilience)

-

Hardness assumptions in lattice - based cryptography can be based on worst-case hardness (rather than the more traditional notion of

average
- case hardness that we have encountered throughout this course so far)

- Worst - case problems over lattices (as well as the specific computational problems we work with) have been extensively studied ( so we have

good confidence in their security)
- Lattices have a lot of useful algebraist ,

which has enabled
many powerful cryptographic applications that we did not have

before (most notably : fully homeomorphic encryption
- enables computing on encrypted data)

↳
Breakthrough result of FHE in 2009 has led to a drainage expansion to the landscape of cryptography and demonstrated

power
t potential of lattice - based cryptography



Definition
.
An n - dimensional lattice £ is a

"

discrete additive subspace
"

of TR" :

I . Discrete : every X E TR
"

has a neighborhood in TR
"

where it is the only point

2 . Additive subspace : O
"

E L and for all x. y
E L

,
- X E L and xty EL

Example : the integer lattice In
,
the

"

g -

ary
"

lattice
of
2
" ( i.e.

,
the set of vectors where each entry is an integer multiple of

q
)

While most ( non - trivial ) lattices are infinite
, they are finitely - generated by taking integer linear combinations of a finite collection of basis

vectors B = { bi
,

- . .

,
bk } :

I = [ (B) = B. 2K = { if , di bi : di E Z for all i c- Ck] }

Example over Tri :

• ← - . O - - - - p • - - - ⇒ O - - - ⇒ • - - - - ⇒ • - - - - - • •

;i;i÷÷÷÷÷÷ .

:
•
'

e - - - - • - - - - ¥0
- - - - - Soo - - - - ⇒ • . . . - → • - - - - → • . . . . . > •

F. ii. i÷i÷i÷i÷i :i

• → ooo! - - ⇒ •
'

- - - - ⇒ ooo - - - ⇒ • . - - → ooo - - - - → • - - - → ooo

Vz

computationalproble.ms :
[
for simplicity , we

will use the la -

norm
-

Shortest vector problem (SVP) : Given a basis B for a lattice L =L CBI
,
find a shortest non-use vector V EY

-

Approximate SVP (SVPy) : Given a basis B for a lattice I =L (B)
,
find a non - zero vector v C- L such that Hull E V . I , ( L ) ,

where
←
approx factor typicallyI , ( L) denotes the norm of the shortest non - zero vector in S

functionof lattice dimension N

-

Decisional approximate SVP (Gap SVP dir) : Given a basis B for a lattice L -
- L (B) where either X. K) Ed or X. ( L) Z V. d

,
decide which is - case

the case

Many other lattice problems , but these should provide a flavor for what lattice problems look like

HarduHs : Many lattice problems are known to be NP - hard (possibly under randomized reductions)

intermediate results :

Major open problem : Can we close this gap? y=fTogTnT : NP n co AM
f- I ( base crypto on NP - hardness) f

y = Tn : Np n co NP

C- • • -
NP hardness crypto

NP-hard under
NP - hard superpoly reductions polynomial time

IF
f- z r -

- c 8=2%5 "
"

f- Gcn) j=2n9 y -

- 2n

(SVP) for constant c for o c e c 1

( smaller than any poly ( n )] [
similar results under the la norm

Hardness of Gap SVP for different
approximation

factors V [ under the ez -

norm ]
( since 11410 E Hulk E Tn 11410)

For cryptographic constructions ,
it is oftentimes more convenient to use average - case problems (which admit redactions from GapSVP)

-

Specifically , we rely on the short integer solutions ( SIS ) or the learning with errors CLWE) problems , which are average-j.ae problems
-

Both the SIS and the LWE problems can be based on the hardness of the GapSVP problem (e.g. , an adversary that solves SIS or LWE can

be used to solve GapSVP in the worst-case)

ShIntegtisIS) : The SIS problem is defined with respect to lattice parameters n
, m , q and a norm bound p .

The SIS mm , qp

problem says that for At 2g
" Y no efficient adversary can find a non - zero vector XE Im where

A- x -

- O E Ign and 11×1/5/3

In lattice - based cryptography, the lattice dimension n will be the primary security parameter .



Notes : - The norm bound p should satisfy p E q .
Otherwise

,
a trivial solution is to set X = (q , 0,0 , . . .

,
OT

.

-

We need to choose m , p to be large enough so that a solution does exist .

↳ when m = In log q) and p ? I
,

a solution always exists
.

In particular, when m Z Tn log q7 ,
there always exists

E- recall that we are

X E f - I , 0,13M such that Ax = O : using the la norm (unless otherwise noted)
- There are 2M Z 2^1%8 =

of
"

vectors y
C- {0,13M } By a counting argument , there exist

- Since Ay E Iq
"

,
there are at most qn possible outputs of Ay y , # yz E {0,13M such that Ay , = Aya

- Thus
,
if we set x -

- y ,
-

ya E f - I
, 0,13M

,
then Ax = Aly, -

ya)
= Ay , - Aga = O E 2g

"

In fact
, the above argument shows that SIS gives a collision-resistanthash-funct.cn ( CRHF ) .

Definition . A keyed hash family H : K x X → Y is collision - resistant if the following properties hold :

-

compressing : 191<1×1
- Collisional : For all efficient adversaries A :

Pr ( KEK ; ( x. x
' ) ← A ( 13k ) : H (k ,

x ) -
- H (k ,

x
' ) and x F x

' ] =

negi (x) .

We can directly appeal to SIS to obtain a CRHF :

H : Ign
'm

x so ,
Bm → Ign

where we set rn > In log q7 .
In this case ,

domain has size 2M > 2
" " s b

=
of

"

,
which is the size of the output space . Collision- resistance

follows assuming SIS n , m , g. is
for

any p 7 t%qT

The SIS hash function supports efficient local updates :

Suppose you
have a public

hash h = H (x) of a bit -

string X E 90,13? Later
, you want to update x ↳ x

'
where x and X

'

only

differ on a few indices (e.g , updating an entry in an address book)
. For instance

, suppose x and x
' differ only on the first bit

leg . ,
X , = O and Xi -

- I )
.

Then observe the following

h -

- H ( k , x ) = A. x
M

= ! . . . . fam) = ,§m
,

Xi ai = E. xiai since x
.

-

- o

j -
- Z

h
'
= H ( k

,
x
' ) = A. ×

'

=

,§m
,

Xi
'

ai = X
,

'
a
,
t ¥2 Xilai = a

,
t

,
Xi
'

ai = a
, th since Xi = Xi for all i z 2

Thus
,

we can easily update h to h
'

by just adding to it the first column of A without Crelcomputing the full hash function
.

Variant : Inhomogeneous SIS .
Given A E Zg

" "

and at Ign ,
find a short X E Zqm ( ie . .

11×11 Ep) such that Ax = u E 2g .

Implication : can be used to get an OWF
.
Take A ⇐ Ight

"

and define the function FA : {0,13M → 2g
"

where fa (x ) : = Ax C- 2g
"

.

Not
quite immediate

.
OWF security : sample x E {915

, compute y
-
- FA G) and give (Aig) to the adversary . ) Are these distributions the

same ?
Inhomogeneous SIS : sample y

£
2g

"
and give

CA
, y) to the adversary.

When m =D ( n log q) , these

( III.stidiaiiyibtniossingaueisnabie )

Definition
.
A keyed hash function H : K + * → Y is pairwise independent if for all X , t Xz EX and

y . ,yz E Y
,

Pr f Ker Ko : H (k
,
xD =y , and Hlk ,

xD -
- ya ] = IIT?



Definition
.
Let A be a finite set and X be a random variable over A

.
Then

,
the guessing probability VH) is defined as

j (x) = Max Pr ( X = x ] [ The probability of the most likely value of X )
X EA

The min -

entropy
of X

,
denoted Hos (X) is defined to be

Hos (X) = - log Max PRIX = x ) (Number of bits of randomness in X )
X C- A

Leftovertlashhe.mn#I : Let H : K x X → Y be a pairwise
- independent hash family . Let X be a random variable over X with

guessing probability
V

.
Then

, for KEK
,

ACK , tick , xD ,
Ck

,
Y )) s # try

where Y is the uniform distribution over Y
.

tnwords : pairwise independent hash functions are god randomness extractors .

Example : suppose we use a group
- based PRF

,
and we want to extract a 128 - bit AES key . Suppose we have a pairwise

- independent hash

function H : K x G → {0,13
" ? If we have a group element o with 256 bits of min -

entropy ,
then V = 2-25? In this case

,
H ( o ) is f - close

to uniform where f = I 42756.21282 f 2-64
.

And now back to Inhomogeneous SIS
. . .

the family H : Ign
'm

× { 0,137 {On } → 2g
"

is pairwise independent.
whenever q is prime .

Take
any

X , F Xz C- { 0.13M I { on } and y , ,yz
C- Zqn

. Suppose At Ign
"

.

Then
,

Pr [ Ax ,
= y , and Axz = ya ]

= Pr [ Ax ,
-
- y , ] - Pr ( Aa -

- ya / Ax , -
- y , ]

=

Pr [ Ax , -

-

y , ]
- Pr CA (xz - x , ) = ya - y, ]

Since X ,
F O

, AX , is taking a subset - sum of the columns of A .
Since A is uniformly random

,
Pr [ Ax .

=

y, ]
= IT ( can see

this by sampling all but one column of A
, corresponding to an entry in X that is set to 1 -

probability that this

column satisfies the relation is q÷ )
.

Likewise for Pr CAH - x ,) = ya - y, ] .

Consider the distributions in the inhomogeneous SIS problem and the OWF security game
:

OWsecurity : sample X E {915
, compute y

-
- FA G) and give (Aig) to the adversary .

InhomogeneousSII : sample y
£
2g

"
and give

CA
, y) to the adversary.

From above
, HIA ,

X ) = fa (x) is a pairwise
- independent hash function so sampling X E soil)

"

and computing
f-
A (x ) = AX yields a valve

that is statistically close to uniform over Ign .

[ Statistical distance is ItFqn = It qT = I g
- n

= negl ( n ) )
E Here, we will take m 7 3 n log q .

( smaller values also

suffice for argument .
]

The LHL will be a very useful tool in lattice - based cryptography (and more generally in cryptography
! )

SIS as a lattice problem :
given At Ign

'm

, find non - zero X t Egm such that Ax -
- O C- 2g

" and 11×11 Ep .

↳ Can be viewed as an average
- case version of finding short vectors in a

"

g
- ary

" lattice :

Lt (A) = { z e 2M : Az = O (mod g) }

Notice that by construction
, q Zm E Lt (A)

I "

q
-

ary
" lattice leg .

,
vectors where all entries are integer multiples of g)

Inhomogeneous SIS : given A E 2g
" 'm

and
y
er 2g

"

, find x E Egm such that Ax -

-

y
C-

2g
"

and 11×11 f p
↳ This is problem

of finding short vectors in lattice Igt (A) = Ct Lt ( A) where CE Igm is an arbitrary vector where Acey



HardnessofSI# : Ajtai first showed ( in 1996) that Lyse hardness of SIS can be based on worst-case hardness of certain

lattice problems
⇒ long sequence

of works understanding and improving the worst - case to average
- case reductions

Typist : Let n be the lattice dimension
.
For

any m
-

- poly Cn) , norm bound p > 0
,
and sufficiently large q

Z p
- poly (n ) ,

Then
,
the SIS mm , qp problem is at least as hard as solving GapsVpy on an arbiter n - dimensional lattice

for V =p
-

poly
cm

.

↳ ie
, solving SIS is as hard as approximating Gap SVP in the west case !


