(S 6501 Week 11: Lattice-Based Cryptography

- So far in this course: Foundations of modern cryptography, pairing based cryptography, zero-knowledge proof systems and cryptographic protocols
- Final major topic in this course: post-guantum cryptography and the <u>nuct</u> generation of cryptography
- We will not have time to cover quantum computing in this course. We will just state the implications:
- <u>Grover's algorithm</u>: Given black box access to a function $f:[N] \rightarrow \{0,1\}$, Grover's algorithm finds an $x \in [N]$ such that f(x) = 1 by making $O(\sqrt{N})$ queries to f.
 - "Searching on unsorted dotabase of size N in time O (171)".
 - $\frac{1}{2}$ <u>Classically</u>: Searching an unstructured database of size N requires time $\Omega_{1}(N)$ cannot do better than a linear scan.
 - ⁺ <u>Quantum</u>: Grover's algorithm is tight for unstructured search. Any quantum algorithm for the unstructured search problem requires making Ds(VN) queries (to the function/databak).
 - => Quantum computes provide a quadratic speedup for unstructured search, and more broadly, function inversion.
 - <u>Implications in cryptography</u>: Consider a one-way function over a 128-bit domain. The task of inverting a one-way function is to find $\chi \in \{0,1\}^{128}$ such that f(x) = y for some fixed target value f. Exhaustive search would take time $\approx 2^{128}$ on a classical computer, but using Grover's algorithm, can perform in time $\approx \sqrt{2^{128}} = 2^{64}$
 - => For symmetric cryptography, need to <u>double</u> key-sizes to maintain same kered of security lunless there are new quantum attacks on the underlying construction street.
 - => Use AES-256 instead of AES-128 (not a significant change!)
- Similar algorithm can be applied to obtain a quantum collision-Sindiny algorithm that runs in time $\sqrt[3]{N}$ where N is the size of the domain (compare to NN for the best classic algorithm)
 - > Instead of using SHA-256, use SHA-384 (not a significant change)
 - -> The quantum absprithen require a large amount of space, so not clear that this is a significant threat, but even if it were, using hash functions with 384 bits of output suffices for security

Main takeaussy: Symmetric cryptography mostly unaffected by quantum computers ~ generally just require a modest increase in luy size L> e.g., symmetric encryption, MACs, authenticated encryption Story more complicated for public-key primitives:

- Simon's algorithm and Shor's algorithm provide <u>polynomial-time</u> algorithms for solving discrete log (in any group with an efficientlycomputable group operation) and for factoring

- Both algorithms rely on period finding (and more broadly, on solving the hidden subgroup problem) Intuition for discrete log algorith (as a period finding problem):

Let
$$f: \mathbb{Z}_p \times \mathbb{Z}_p \rightarrow \mathbb{G}$$
 be the function
 $f(x,y) = g^x h^{-y}$

By construction,

$$f(x+\alpha, y+1) = g^{x+\alpha} h^{-y-1} = g^{x} h^{-y} g^{\alpha} h^{-1} = g^{x} h^{-y} = f(x,y)$$

Thus, the element $(\alpha, -1)$ is the period of f, so using Shor's algorithm, we can efficient compute $(\alpha, -1)$ from (g, h), which yields the discrete log of h

Thus, if large scale quantum computers come online, we will need new cryptographic assumptions for our public-key primitives

L> All the algebraic assumptions we have considered so for (e.g., discrete log, factoring, pairings) are broken

<u>How realistic is this threat</u>? - Lots of progress in building quantum computers recently by both academic and industry (e.g., see initiatives by Google, IBM, etc.)

To run shor's algorithm to factor a 2048-bit RSA modulus, estimated to need a quantum computer with
 ≈ 10000 logical qubits (analog of a bit in dassical computers)

L> With quantum error correction, this requires > 10 million physical qubits to realize

Today: machines with 10s of physical gubits, so still very far from being able to run Shor's algorithm

- Optimistic estimate: At least 20-30 years away (and some say rever...)

Should we be concerned? Quantum computers would break existing key-exchange and signature schemes

- Signatures: Future adversaries would be able to forze signatures under today's public keys, so if quantum computers come online, we can switch to and only use post-quantum schemes

<u>Key-Exchange</u>: Future adversaries can break <u>confidentiality</u> of today's messages (i.e., we lose forward secrecy) — this is <u>problematic</u> in many scenarios (e.g., businesses want trade secrets to remain hidden for 50 years)

Reasons to study post-quantum cryptography:

1. Protect confidentiality of today's computations against potential future threat

2. Standards take a long time to hevelop and deploy, so should start now

L> NIST has initiated a multi-year initiative to develop and standardize post-quantum key-exchange and signatures (currently in 2nd year of 6-year initiative)

Lo Google recently gibted an experiment involving post-quantum key exchange in Chrome (using a "best of both worlds" approach where key derived from mix of classic key exchange and post-quantum key exchange)

3. New kinds of mathematical structures and assumptions - opportunity to build cryptography up from screetch again!

<u>Candidates for post-quantum hardness</u>: many classes of assumptions, many different tradeoffs, will survey several belas: <u>Hash-based cryptography</u>: Use hash functions (symmetric primitives)

- "Suffices for signatures, but <u>not</u> for key exchange (black box separations)
- -Assumption seems very safe (not based on algebraic / structured hardness assumptions)
- Signatures built from hash functions are very large (e.g., SPHINCs signatures are 40 KB by)
 - L> Could be good choice where large signatures are acceptable (e.g., signing software updates)

- Isogeny-based cryptography: - More recent class of cryptographic assumptions based on hard problems related to computing mappings

- between elliptic curves
- Gives a simple key-exchange protocol that is analogous to Diffie-Hellman and has compact communication (e.g., a few hundred bytes)
- Signatures also possible, but longer compared to Schwarr (ECDSA, sharter compared to hash-based and lattices [Open: Schwarr-style signatures from isogenies?]
- Relatively new type of hardness assumption needs more cryptionalysis
- Has interesting algebraic structure (can be viewed as computing a hard <u>group action</u>) and provides promising avenues for developing new types of cryptographic primitives [lots of interesting research problems!

- <u>Code-based cryptography</u>: - Based on hard problems from cating theory (e.g., hardness in decoding a <u>random</u> linear code) - Dates back to the late 1970s (e.g., McEliece family of cryptographic schemes)

- Many variants (e.g., using codes with additional algebraic structure are broken, but original candidate by McEliesce remains a plausible candidate
- Schemes have large parameter (key-sizes) needed to resist best-known attacks

- Multivariate Cryptography: - Based on conjectured hardness of solving systems of multivariate polynomials over finite fields

- Many schemes based on these types of assumptions have been broken, and to date, there has been (relatively) limited study on these assumptions
- Typically schemes have large parameter sizes, so there is no clear advantage compared to many of the other leading contenders

Our focus : lattice-based cryptography

Before defining lattices, a few motioating reasons to study lattices (beyond its conjectured post-quantum resilience)

- Hardness assumptions in lattice-based cryptography can be based on worst-case hardness (rother than the more traditional notion of average-case hardness that we have encountered throughout this course so far)
- Worst-case problems over lattices (as well as the specific computational problems we work with) have been extensively studied (so we have good confidence in their security)
- Lattices have a lot of useful algebraic structure, which has enabled many powerful cryptographic applications that we did not have before (most notably: fully homomorphic encryption enables computing on encrypted data)
 - L> Breakthrough result of FHE in 2009 has led to a <u>dramatic</u> expansion to the landscape of cryptography and demonstrated power t patential of lattice-based cryptography

Definition An	n-dimensional	lattice L	, is a "discrete	additive subspace	of TR":			
	1. Discrete:	every XE.	R has a neighbor	hood in TR" where	it is the only	point		
	2. Additive s	ubspace: (D ^r eL and fo	or all x, y E L,	-xel and y	xty eL		
Example: the	integer lattice	Zn, the	"q-ary" lattice q	Z ⁿ (i.e., the set a	of vectors where	each entry is an	integer multiple of	<u>ر</u>)
							J ,	0
While most (nor	(-trivial) lattice:	s are infinit	te, they are finit	ely-generated by t	aking <u>integer</u> lin	ear combinations of	- or finite collecti	ion of basis
vectors B = 1	(b1,, bk}:		,					
	L	= L(B)	$= \mathbf{B} \cdot \mathbb{Z}^k = \{ \sum_{i \in \mathcal{U}} $	يα:ه: = α: ∈ ∑ ۴	r all i e [k]}			
Example over T	R ² :							
- \								
			AAAA					
	1							
	•≪ Vi /	1 1 1	1 1 1 1					
	•/	1/1/1	/ / / /	•				
	V ₂	÷€>€7€		•				
								0
Computational pro	blems:						\sim	for simplicity, we will use the form
- Shortest ve	ctor problem (S	SVP): Give	n a basis B for	a lattice $L = L($	B), find a show	rtest non-zero vec	tor vel	
- Approximate	SVP (SVPy)	: Given a b	oasis B for a lott	ice $L = L(B)$, find	d a non-zero ver	ctor v e L such th	at 11 v1i ≤ X·λ,(L`), where
) (L) d	lenotes the norm of	the shortest non-zer	ro vector in L		function of lattice	tactor typically dimension n
⁻ Decisional o	pproximate SVP	(Gap SVPd;	r): Given a basis	B for a lattice L	= L (B) where e	ither $\lambda_i(\mathcal{R}) \leq d$	$\lambda_{n}(L) \geq 3.d$	lecide which is
			the case					
Many other latti	e problems, but	Here sho	uld provide a fl	asor for what latti	ce problems look	tike		
I	1		7					
Hardness results:	Many lattice	Problems are	known to be NE	-hasel (pessible und	er randomized red	huctions)		
	• 1	1		qq-		min and into		
			Major open problem	n: Can we close th	nis Sap?	x= 1/1	an : NP (co AM	
				(base cr	ypto on NP-hardre	ess) J = Nr.	911 a co NP :	
			NP hardness	Crypto	>			
	.10.	NP-ha	rd under		Bolyson	al time		
	NP-1	vard sup	erpely reductions	J ^{I-E}				
	7=1	Y=c	X= 2(2)	N Y=Θ(n)	J= J rod u	γ= 2 [∩]		
	(SVP)	tor constant C	· for oceci	1		AL		
			lsmaller than o	nu'h bouh(u)]		similar results	under The 200 ho	- H.H.)
	Hardness	of GoopSV9	P for different a	pproximation fuctors	of [under the .	lz-norm] (sinc	e ∨ ₀₀ ≤ v ₂ ≤ 1	n V)
		1		μ				
For cryptographic	constructions, "A	is oftentime:	s more converient	to use average-c	ase problems (w	which admit reduction	s from GapSVP)	
- Specifically	ove rely on th	e Short inte	ever solutions (SIS)	or the learnine u	sith errors (LWE)	public	average - case months	m3
- Roth the S	IS and the UN	E empleme	can be breed an	the hardware at 11	6 GROSVP - 11-10	en (en en adress	any that salwa et	S or LWF con
	calue (- cill		et and	The meas of th	~ Ungoin proble	- (cug.) are address		
De used to	some capsing	IN THE WOO	101- (USC)					

Short Integer Solutions (SIS): The SIS problem is defined with respect to lattice parameters n, m, q and a norm bound p. The SIS n, m, q, p problem says that for $A \stackrel{R}{\leftarrow} \mathbb{Z}_q^{n, m}$, no efficient adversary can find a non-zero vector $X \in \mathbb{Z}^m$ where $A \times = 0 \in \mathbb{Z}_q^{q}$ and $\|X\| \leq p$

In lattice-based cryptography, the lettice dimension n will be the primary security parameter.

Notes: - The norm bound as should satisfy as ξ . Otherwise, a trivial solution is to set X = (g, 0, 0, ..., 0).

"We need to choose m, ps to be large enough so that a solution does exist.

Nhen m = No(n log g) and go≥1, a solution always exists. In particular, when m≥In log g], there always exists
$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

$$x \in \{-1,0,1\}^m \text{ such that } Ax = 0:$$

- Since Ay
$$\in \mathbb{Z}_{q}^{n}$$
, there are at most q_{1}^{n} possible outputs of Ay $J_{1} \neq y_{2} \in \{0,1\}^{m}$ such that Ay₁ = Ay₂
- Thus, if we set $x = y_{1} - y_{2} \in \{-1,0,1\}^{m}$, then $Ax = A(y_{1} - y_{2}) = Ay_{1} - Ay_{2} = 0 \in \mathbb{Z}_{q}^{n}$

In fact, the above argument shows that SIS gives a <u>collision-resistant</u> hash function (CRHF).

Definition. A keyed hash family H: K × X -> Y is collision-resistant if the following properties hold:

- Collision-Resistant: For all efficient adversaries A:

$$\Pr\left[k \stackrel{e}{\leftarrow} \mathcal{K}; (x, x') \leftarrow \mathcal{A}(1^{\lambda}, k) : \mathcal{H}(k, x) = \mathcal{H}(k, x') \text{ and } x \neq x'\right] = \operatorname{reg1}(\lambda).$$

We can directly appeal to SIS to obtain a CRHF: $H: \mathbb{Z}_{g}^{n\times m} \times \{0,1\}^{m} \longrightarrow \mathbb{Z}_{g}^{n}$

where we set $m > [n \log q]$. In this case, domain, has size $2^n > 2^{n \log 2} = q^n$, which is the size of the output space. Collision resistance follows assuming SIS n, m, q, p for any $p \ge \sqrt{\ln \log q}$

The SIS hash function supports efficient local updates:

Suppose you have a public hash h = H(x) of a bit-string $X \in \{0, 13^{\text{M}}$. Later, you want to update $X \mapsto x'$ where x and x' only differ on a few indices (e.g., updating an entry in an address book). For involunce, suppose x and x' differ only on the first bit (e.g., $x_1 = 0$ and $x'_1 = 1$). Then observe the following $h = H(k, x) = A \cdot x$

$$h = H(k_1 x_1) - A \cdot x$$

$$= \begin{pmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_m \\ | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \sum_{i \in [m]} x_i a_i = \sum_{i=2}^{m} x_i a_i \quad \text{since } x_i = 0$$

$$h^{i} = H(k_1 x^{i}) = A \cdot x^{i}$$

$$= \sum_{i \in [m]} x_i^{i} a_i = x_1^{i} a_1 + \sum_{i=2}^{m} x_i^{i} a_i = a_1 + h \quad \text{since } x_i^{i} = x_i \quad \text{for } a|| \quad i \ge 2$$

Thus, we can easily update h to h' by just adding to it the first column of A without (re) computing the full hash function.

Variant: Inhomogeneous SIS. Given A & Zynam and u & Zy, find a short
$$x \in Z_g^m$$
 (i.e., $\|x\| \leq \beta$) such that $Ax = u \in Z_g^n$.

 $\frac{\text{Inplication}: \text{ Can be used to get an OWF. Take <math>A \stackrel{\text{de}}{=} \mathbb{Z}_{q}^{n}$ and define the function $f_{A} : \{0, 1\}^{n} \rightarrow \mathbb{Z}_{q}^{n}$ where $f_{A}(x) := Ax \in \mathbb{Z}_{q}^{n}$. Not quite immediate. OWF security: sample $x \stackrel{\text{de}}{=} \{0, 1\}^{n}$, compute $y = f_{A}(x)$ and give (A, y) to the adversary. Inhomogeneous SIS: sample $y \stackrel{\text{de}}{=} \mathbb{Z}_{q}^{n}$ and give (A, y) to the adversary. [When $m = \Omega_{A}(n \log q)$, these

[When m = lb (n log g), these two distributions are statistically indistinguishable]

Definition. A keyed hash function
$$H: K \times X \rightarrow Y$$
 is poinsise independent if for all $X_1 \neq X_2 \in X$ and $Y_1, Y_2 \in Y_1$.
 $\Pr[k \in \mathbb{R} : H(k, X_1) = Y_1 \text{ and } H(k, X_2) = Y_2] = \frac{1}{181^2}$.

Definition. Let Ω be a finite set and X be a random variable over Ω . Then, the greassing probability Y(X) is defined as $Y(X) = \max \Pr[X = X]$ [The probability of the most likely value of X] XER

The min-entropy of X, denoted Hos (X) is defined to be

$$H_{00}(X) = -\log \max_{X \in C_{1}} Pr[X = X]$$
 [Number of birts of randomness in X]

Leftover Hash Lemma (LHL): Let H: K × X -> Y be a poinvise-independent hash family. Let X be a roundom variable over X with guessing probability Y. Then, for k & K,

$$\Delta\left[\left(k,H\left(k,X\right)\right),\left(k,Y\right)\right] \leq \frac{1}{2}\sqrt{\gamma}|\mathcal{G}|$$

where Y is the withorm distribution over y.

In words: poinsise independent bash functions are good randomness extractors

Example: Suppose we use a group-based PRF, and we want to extract a 128-bit AES key. Suppose we have a poincise-independent hash function H: K × G -> {0,13¹²⁸. If we have a group element or with 256 bits of min-entropy, then $Y = 2^{-256}$. In this case, H(o) is 8-close to wifer observe $S = \frac{1}{2}\sqrt{2^{-256} \cdot 2^{128}} \leq 2^{-14}$.

And now back to Inhomogeneous SIS... the family H:
$$\mathbb{Z}_{g}^{n,m} \times \{0,1\}^{m} \setminus \{0^{m}\} \rightarrow \mathbb{Z}_{g}^{n}$$
 is poincise independent whenever g is prime.
Take any $X_{1} \neq X_{2} \in \{0,1\}^{m} \setminus \{0^{m}\}$ and $y_{1}, y_{2} \in \mathbb{Z}_{g}^{n}$. Suppose $A \in \mathbb{Z}_{g}^{n,m}$. Thun,
 $\Pr[AX_{1} = y_{1} \text{ and } AX_{2} = y_{2}] = \Pr[AX_{1} = y_{1}] \cdot \Pr[AX_{2} = y_{2} \mid AX_{1} = y_{1}]$
 $= \Pr[AX_{1} = y_{1}] \cdot \Pr[A(X_{2} - X_{1}) = y_{2} - y_{1}]$

Since $x_1 \neq 0$, Ax_1 is taking a subset-sum of the columns of A. Since A is uniformly random, $\Pr[Ax_1 = y_1] = \overline{g^n}$ (can see this by sampling all but one column of A, corresponding to an entry in x that is set to $1 - \Pr[Ax_1 = y_1] = \overline{g^n}$ (can see column satisfies the relation is $\overline{g^n}$). Likewise for $\Pr[A(x_2 - x_1) = y_2 - y_1]$.

Consider the distributions in the inhomogeneous SIS problem and the OWF security game: <u>OWF security</u>: sample $x \in 20,13^{\circ}$, compute $y = f_A(x)$ and give (A,y) to the adversary. <u>Inhomogeneous SIS</u>: sample $y \in \mathbb{Z}_q^{\circ}$ and give (A,y) to the adversary. From above, $H(A, x) = f_A(x)$ is a pairwise-independent hash function so sampling $x \in 20,13^{\circ}$ and computing $f_A(x) = Ax$ yields a value that is statistically close to uniform over \mathbb{Z}_q° . [Statistical distance is $\frac{1}{2}\sqrt{2^{-m}\cdot q^n} = \frac{1}{2}\sqrt{q^{-m}\cdot q^n} = \frac{1}{2}q^{-n} = negl(n)$] \mathbb{C} Here, we will take $m \ge 3n \log q$. [Smaller values also suffice for argument.]

The LHL will be a very useful tool in lattice-based cryptography (and more generally in cryptography!)

SIS as a lattice problem: given
$$A \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m}$$
, find non-zero $x \stackrel{\ell}{\leftarrow} \mathbb{Z}_{q}^{m}$ such that $Ax = 0 \stackrel{\ell}{\leftarrow} \mathbb{Z}_{q}^{n}$ and $||x|| \stackrel{\ell}{\leftarrow} p$.
 \downarrow Can be viewed as an average-case version of finding short vectors in a "g-ary" lattice:
 $L^{\perp}(A) = \{z \stackrel{\ell}{\leftarrow} \mathbb{Z}_{q}^{m} : Az = 0 \pmod{q}\}$

Notice that by construction, $g \mathbb{Z}^m \subseteq L^+(A)$

<u>ر</u>____

----- "g-ary" lattice (e.g., vectors where all entries are integer multiples of g)

Inhomogeneous SIS: given $A \stackrel{P}{\leftarrow} Z_{g}^{n,m}$ and $y \stackrel{P}{\leftarrow} Z_{g}^{n}$, find $x \in Z_{g}^{n}$ such that $Ax = y \in Z_{g}^{n}$ and $\|x\| \leq \beta$ \longrightarrow This is problem of finding short vectors in lattice $L_{g}^{\downarrow}(A) = C + L^{\perp}(A)$ where $C \in Z_{g}^{m}$ is an arbitrary vector where $A \subset = y$

- Hardness of SIS: Ajtai first showed (in 1996) that <u>average-case</u> hardness of SIS can be based on worst-case hardness of certain lattice publems => long sequence of works understanding and improving the worst-case to average-case reductions
- Typical statement: Let a be the lattice dimension. For any m = poly (n), norm bound \$\$ > 0, and sufficiently large g > \$p.poly(n), Then, the SIS n, m, g, p problem is at least as hard as solving GapSVPy on an <u>arbitrary</u> n-dimensional lattice for X = \$p.poly(n).
 - ie., solving SIS is as hard as approximating Gap SVP in the worst case!