CS 6501 Week 12: Lattice-Based Cryptography
Recall the inhorogegeneous SIS problem: given $A \in \mathbb{Z}_{q}^{n \times m}$ and $u \leqslant \mathbb{Z}_{q}^{n}$, find $x \in \mathbb{Z}_{q}^{m}$ such that $A x=y$ and $\|x\| \leqslant \beta$
It turns out that this can actually be used as a trapdoor function. Namely, there exist efficient algorithms

- $\operatorname{Trap} \operatorname{Gen}(n, m, q, \beta) \rightarrow\left(A,+d_{A}\right): O_{n}$ input the lattice parameters n, m, q, the trapdore-generation aforithm outputs a matrix $A \in \mathbb{Z}_{q}^{n \times m}$ and a trapdoor $t d_{A}$
- $f_{A}(x) \rightarrow y: O_{n}$ input $x \in \mathbb{Z}_{q}^{m}$, computes $y=A x \in \mathbb{Z}_{q}^{n}$
- $f_{A}^{-1}\left(\operatorname{td}_{A}, y\right) \rightarrow x: O_{n}$ input the trapdoor td_{A} and an element $y \in \mathbb{Z}_{q}^{n}$, the inversion algorithm outputs a value

$$
\|x\| \leq \beta
$$

Moreover, for a suitable choice of n, m, q, β, these algorithms satisfy the following properties:

- For all $y \in \mathbb{Z}_{q}^{n}, f_{A}^{-1}\left(t_{A}, y\right)$ outputs $x \in \mathbb{Z}_{q}^{n}$ such that $\|x\| \leq \beta$ and $A x=y$
- The matrix A output by Trapben is statistically close to uniform over $\mathbb{Z}_{q}^{n \times m}$

Lattice trapdosss have received significant amount of study and we will not have time to study it extensively. Here, we will sketch the high-lerel idea behind a very useful and versatile trapdoor known as a "gadget" trapdoor

First, we define the "gadget" matrix (there are actually many possible gadget matrices - here, we are a common one sometimes called the "powers- of -two" matrix):

Each row of G consists of the powers of two (up to $2^{\lfloor\log g\rfloor}$). Thus, $G \in \mathbb{Z}_{q}^{n \times n\lfloor\log q\rfloor}$. Oftentimes, we will just write $G \in \mathbb{Z}_{q}^{n \times m}$ where $m>n\lfloor\log q\rfloor$. Note that we can always pad G with all-zens columns to obtain the desired dimension.

Observation: SIS is easy with respect to G :

$$
G \cdot\left(\begin{array}{c}
2 \\
2 \\
\vdots \\
\vdots \\
0
\end{array}\right)=0 \in \mathbb{Z}_{q}^{n} \quad \Rightarrow \text { norm of this vector is } 2
$$

Inhomogeneous SIS is also easy with respect to G : take any target vector $y \in \mathbb{Z}_{\xi}^{n}$.
Let $y_{i, l}, l_{g} b, \ldots, y_{i, 1}$ be the binary decomposition of y_{i} (the $i^{\text {th }}$ component of y). Then,
\uparrow Observe that this is a olA vector (binary valued vector), so the lo -norm is exactly 1
We will denote this "bid-decomposition" operation by the function $G^{-1}: \mathbb{Z}_{q}^{n} \rightarrow\{0,1\}^{m}$
$\tau_{\text {important: }} G^{-1}$ is not a matrix (even though G is)!

Then, for all $y \in \mathbb{Z}_{q}^{n}, G \cdot G^{-1}(y)=y$ and $\left\|G^{-1}(y)\right\|=1$. Thus, both SIS and inhomogeneous SIS are easy with respect to the matrix G.

We now have a matrix with a public trapdoor. To construct a secret trapdoor function (useful for cryptographic applications), we will "hide" the gadget matrix in the matrix A, and the trapdoor will be a "short" matrix (ie, matrix with small entries) that recovers the gadget.

More precisely, a gadget trapdoor for a matrix $A \in \mathbb{Z}_{q}^{n \times k}$ is a short matrix $R \in \mathbb{Z}_{G}^{k \times m}$ such that

$$
A \cdot R=G \in \mathbb{Z}_{q}^{n \times m}
$$

We say that R is "short" if all valves are small. [we will write $\|R\|$ to refer to the largest valve in R].

Suppose we know $R \in \mathbb{Z}_{q}^{m \times m}$ such that $A R=G$. We can then define the inversion algorithm as follows:

- $f_{A}^{-1}\left(t d_{A}=R, y \in \mathbb{Z}_{q}^{n}\right)$: Output $x=R \cdot G^{-1}(y)$. Important note: When using trapdoor functions in a setting where the We check two properties:

1. $A x=A R \cdot G^{-1}(y)=G \cdot G^{-1}(y)=y$ so x is indeed a valid pre-image
2. $\|x\|=\left\|R \cdot G^{-1}(y)\right\| \leqslant m \cdot\|R\|\left\|G^{-1}(y)\right\|=m \cdot\|R\|$ adversary can see trapdoor evaluations, we actually reed to randomize the computation of f_{A}^{-1}. Thus, if $\|R\|$ is small, then $\|x\|$ is also small (think of β as a large polynomial in n). But this basic scheme illustrate main ideas...

Remaining question: How do we generate A together with a trapdoor (and so that A is statistically close to uniform)?

Many techniques to do so; we will look at one approach using the LHL:
Sample $\bar{A} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m}$ and $\bar{R} \stackrel{R}{\leftarrow}\{0,1\}^{m \times m}$.
Set $A=[\bar{A} \mid \bar{A} \bar{R}+G] \in \mathbb{Z}_{q}^{n \times 2 m}$
Output $A \in \mathbb{Z}_{q}^{n \times 2 m},+d_{A}=R=\left[\begin{array}{c}-\bar{R} \\ I\end{array}\right] \in \mathbb{Z}_{q}^{2 m \times m}$
First, we have by construction that $A R=-\bar{A} \bar{R}+\bar{A} \bar{R}+G=G$, and moreover $\|R\|=1$. It suffices to argue that A is statistically close to uniform (without the trapdoor R). This boils down to showing that $\bar{A} \bar{R}+G$ is statistically close to uniform given \bar{A}. We appeal to the LHL:

1. From the previous lecture, the function $f_{A}(x)=A_{x}$ is pairwise independent.
2. Thus, by the $L H L$, if $m \geqslant 3 n \log q$, then $A r$ is statistically close to uniform in \mathbb{Z}_{q}^{n} when $r \mathbb{R}^{R}\{0,1\}^{m}$.
3. (lain now follows by a hybrid argument (applied to each column of R).

Thus, given \bar{A}, the matrix $\bar{A} \bar{R}$ is still statistically close to uniform. Corresponding, A is statistically close to uniform.
Digital signatures from lattice trapdoors: We can use lattice trapdoors to obtain a digital signature scheme in the randan oracle model (this is essentially an analog of RSA signatures):

- Key $\operatorname{Gen}\left(1^{\lambda}\right): \quad\left(A, t_{A}\right) \leftarrow \operatorname{Trap} \operatorname{Gen}(n, m, q, \beta) \quad$ [lattice parameters n, m, q, β are based on security parameter λ]

Output $v k=A$ and $s k=+d_{A}$

- Sign $(s k, m)$: Output $\sigma \leftarrow f_{A}^{-1}\left(+d_{A}, H(m)\right)$. Here, $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$ is modeled as a random oracle.
- Verify $(v k, m, \sigma)$: Check that $\|\sigma\| \leqslant \beta$ and that $f_{A}(\sigma)=H(m)$.

Hardness reduces to hardness of inhomogeneous SIS (similar proof as RSA-FDH). Sketch:

1. Replace A with a uniformly random matrix (as required by inhomogeneous SIS) - follows by property of Trap Gen
2. Given inhomogeneous SIS challenge (A, y), set public key to A and $H\left(m^{*}\right)=y$ where m^{*} is the message the adversary forges on (guess this at beginning)
3. To simulate signing queries on a message m (without knosledye of trapdoor), first sample $x \leftarrow D_{s}$ and sets $H(m)=A x$

- Here D_{s} corresponds to the distribution of vectors output by the preimage-sampling algorithm f_{A}^{-1} [this is typically a discrete Gaussian distribution with standard deviation s, where s is chosen so that $A x$ is statistically close to uniform over $L(A)]$
- Thus, by programming the random orade, we can sign arbitrary messages without knowledge of the trapdoor for A

Summary so for: - The SIS problem can be used to realize many symmetric primitives such as OWFs, CRHFs, and signatures

- Useful trick: "Concealing" a trapdoor (e.g., short matrix/basis) within a random-looking one - common theme in lattice-based cryptography.

For public-key primitives, we will rely on a very similar assumption: learning with errors (LWE), which can also be viewed as a "dana" of SIS. We introuce the assumption below: errors are typically much smaller than 85
Learning with Errors (LWE): The LWE problem is defined with respect to lattice parameters n, m, q, x, where X is an error distribution over \mathbb{Z}_{q} (oftentimes, this is a discrete Gaussian distribution over \mathbb{Z}_{q}). The LW E $E_{n, n} x$ assumption states that for a random choice $A \leftarrow \mathbb{Z}_{q}^{n+m} s \leftarrow \mathbb{Z}_{q}^{n}$, $e \leftarrow X^{m}$, the following two distributions are computationdy indistinguishable:

$$
\left(A, s^{\top} A+e^{\top}\right) \approx(A, r)
$$

where $r \stackrel{R}{\hookrightarrow} \mathbb{Z}_{q}^{m}$.

In words, the LWE assumption says that noisy linear combinations of a secret vector over \mathbb{Z}_{q}^{n} looks indistinguishable from random.

A few notes/obsersations on $\angle W E$:

- Typically, m is sufficiently large so that the LWE secret s is uniquely determined.
- Without the error terms, this problem is easy for $n>n$: simply use Gaussian elimination to solve for s
- Observe that if SIS is easy, then LWE is easy. Namely, if the adversary can find a short $u \in \mathbb{Z}_{q}^{m}$ such that $A_{u}=0$, then, the adversary can compute

$$
\left(s^{\top} A+e^{\top}\right) u=s^{\top} A u+e^{\top} u=e^{\top} u \Rightarrow\left\|e^{\top} u\right\| \leqslant m \cdot\|e\| \cdot\|u\|
$$

τ this is small (compared to q)
$r^{\top} u$ will be uniform over \mathbb{Z}_{q}, ane unlikely to be small

- We can also choose the LWE secret from the error distribution (so it is short) - can be useful for both efficiency and for functionality (this is at least as hard as LWE with secrets drawn from any distribution, including the uniform one)
- Can also consider search vs. decision versions of the problem (i.e., search LDE says given ($A, s^{\top} A+e^{\top}$), find s). There an search-to-decision reductions for LWE.

LWE as a lattice problem: The search version of LWE essentially asks one to find s given $s^{\top} A+e^{\top}$. This can be viewed as solving the "bounded-distance decoding" (BDD) problem on the q-arr lattice

$$
\mathcal{L}\left(A^{\top}\right)=\left\{s \in \mathbb{Z}_{q}^{n}: A^{\top} s\right\}+q \mathbb{Z}^{n}
$$

ie., given a point that is close to a lattice dement $S \in \mathcal{L}\left(A^{\top}\right)$, find the point S

Connections to worst-case hardness: Regev showed that for any $m=$ poly (n) and modulus $q<2^{\text {ply }(n)}$ and for a discrete Gaussian noise distribution (with values bounded by β), solving LWEn,m,,x is as hard as quantumly solving GapSVp on arbitrary n-dimensional lattices with approximation factor $\gamma=\tilde{0}(n \cdot q / \beta)$
\longrightarrow Long sequence of subsequent works have shown classical reductions to worst-case lattice problems (for suitable instantiations of the parameters)

Symmetric encryption from LWE (for binary-valued messages)
Setup (1^{λ}): Sample $s^{\mathbb{R}} \mathbb{Z}_{q}^{n}$.
Encrypt $(s, \mu)^{\varepsilon_{0} 0^{3}:}$: Sample $a \in \mathbb{Z}_{q}^{n}$ and $e \leftarrow x$. Output $\left(a, s^{\top} a+e+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)$.

$$
\operatorname{Decrypt}(s, c t): \text { Output } \underbrace{\left\lfloor c t_{2}-s^{T} c t_{1}\right]_{2}}_{\begin{array}{c}
\text { "rounding } \\
\text { operation" }
\end{array}}
$$

$$
\frac{\lfloor x\rangle_{2}}{\uparrow}= \begin{cases}0 & \text { if }-\frac{9}{4} \leqslant x<\frac{9}{4} \\ 1 & \text { otherwise }\end{cases}
$$

$\tau_{\text {take }} x \in \mathbb{Z}_{q}$ to be representative between $\frac{-q}{2}$ and $\frac{q}{2}$

Correctness:

$$
\begin{aligned}
c t_{2}-s^{\top} c t_{1} & =s^{\top} a+e+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} a \\
& =\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor+e
\end{aligned}
$$

if $|e|<\frac{9}{4}$, then decryption recovers the correct bit
Security: By the LWE assumption, ($\left.a, s^{\top} a+e\right) \approx(a, r)$
 where $r \stackrel{R}{\&} \mathbb{Z}_{q}$. Thus,

$$
\underbrace{\left(a, s^{\top} a+e\right)}_{\text {encryption of } 0} \stackrel{\approx}{\begin{array}{c}
\text { since } r \text { is uniform } \\
\text { over } \mathbb{Z}_{\xi}
\end{array}} \overbrace{L W E}^{(a, r) \equiv\left(a, r+\left\lfloor\frac{q}{2}\right\rfloor\right)} \approx \underbrace{\left(a, s^{\top} a+c+\left(\frac{q}{2}\right\rfloor\right)}_{\text {encryption of } 1}
$$

Observe: this encryption scheme is additively homomorphic (over \mathbb{Z}_{2}):

$$
\begin{aligned}
& \left(a_{1}, s^{\top} a_{1}+e_{1}+\mu_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right) \\
& \left(a_{2}, s^{\top} a_{2}+e_{2}+\mu_{2} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
\end{aligned} \Rightarrow\left(a_{1}+a_{2}, s^{\top}\left(a_{1}+a_{2}\right)+\left(e_{1}+e_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

Visually:

Security: Follows by LWE and LHL:
Hypo: Real public key
$H_{y} b_{1}$: Unitoornly random public key (egg. $b \leftarrow \mathbb{Z}_{q}^{m}$)
$H_{y} b_{2}$: Uniformly random ciphertext

$$
\begin{aligned}
& 2 L \omega E
\end{aligned}
$$

$$
\begin{aligned}
& r \leftarrow\{0,1\}^{m} \text {, and } u \leftarrow\{0,1\}
\end{aligned}
$$

Encrypting multiple bits: May seem wasteful to use a vector to encrypt a single bit. We can consider a simple variant of Regor encryption where we reuse A to encrypt multiple bits:

$$
\begin{array}{rll}
\text { Setup }\left(1^{\lambda}, 1^{l}\right): \text { sample } A \mathbb{R}^{R} \mathbb{Z}_{q}^{n \times m} & & \\
& \left(\begin{array}{ll}
S \leftarrow \\
E \leftarrow \mathbb{Z}_{q}^{n \times l} & X^{m \times l}
\end{array}\right. & B^{\top} A+E^{\top} \in \mathbb{Z}_{b}^{l \times m}
\end{array} \quad \text { sk: } S
$$

l secopet hes concatenated together

$$
\begin{aligned}
\text { Encrypt }\left(p k, \mu \in\{0,1\}^{\ell}\right): & \text { sample } r \stackrel{R}{\leftarrow}\{0,1\}^{m} \\
& \text { output }\left(\text { Ar, } B^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
\end{aligned}
$$

Decrypt (sk, ct) : output $L c t_{2}-S^{\top} c t_{1} T_{2}$
Correctness: As before: $c t_{2}-S^{\top} c t_{1}=B^{\top} r+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor-S^{\top} A r=E^{\top} r+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor$
Security: As before: by LISE, $\left(A, S^{\top} A+E^{\top}\right) \approx(A, R)$ where $A^{\circ} \mathbb{Z}_{q}^{n \times m}, S^{2} \mathbb{Z}_{q}^{n \times l}, E \leftarrow X^{m \times l}, R \leftarrow \mathbb{Z}_{q}^{\text {lem }}$
L in parthecler, apply a hybrid argument and argue for each row of S (and corresponding row of $S^{\top} A+E^{\top}$)

