<u>CS 6501</u> Week 3: Number - Theoretic Cryptography

So far in the course: we have mechanisms for message confidentiality and integrity, but all rely on parties having a shared key Question: Where do symmetric keys come from?

We will begin with a few concepts from algebra that will be useful:

Definition. A group consists of a set G together with an operation * that satisfies the following properties:
- Closure: If 9,9,2 G, then 9,*9,2 G
- Associativity: For all 9,92,93 C G, 9, * (92*93) = (9, *92) * 93
- Identity: There exists an element e E G such that
$$e \times g = g = g \times e$$
 for all $g \in G$
- Inverse: For every element $g \in G$, there exists an element $g' \in G$ such that $g \times g' = e = g' \times g$
In addition, we say a group is commutative (or abelian) if the following property also holds:
- Commutative: For all 9,92 E G, 9, * 92 = 92 × 91
- Called "multiplicative" notation

Notation: Typically, we will use "." to denote the group operation (unless explicitly specified otherwise). We will write g^x to denote g.g.g.g. g (the usual exponential notation). We use "1" to denote the <u>multiplicative identity</u>. X times

Examples of groups: (IR, +): real numbers under addition (Z, +): integers (Addition (Additi

entire set. The conditality of
$$(g)$$
 is the order of g (i.e., the size of the "subgroup" generated by g)
Example. Consider $\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$. In this case,
 $(27) = \{1,2,4\}$ [2 is not a generator of \mathbb{Z}_7^*] ord $(2) = 3$
 $(3) = \{1,3,2,6,4,5\}$ [3 is a generator of \mathbb{Z}_7^*] ord $(3) = G$
Lagrange's Theorem. For a group G, and any element $g \in G$, ord $(g) \mid |G|$ (the order of g is a divisor of $|G|$).

The discrete log problem. Let G be a group and take elements g,h & G. The discrete log problem in G is to compute $X \in \mathbb{Z}_{ord}(G)$ such that $h = g^X$.

The discrete log assumption in \mathbb{Z}_p^* . Sample $(g, p) \leftarrow Group Gen(1^2)$, where log $p = poly(\lambda)$ and $\langle g \rangle = \mathbb{Z}_p^*$. Then, for all efficient adversaries A, $\Pr[h \in \mathbb{Z}_{p}^{*}; x \leftarrow A(p, g, h) : h = g^{x}] = \operatorname{regl}(a).$

Common setting: choose p to be a "safe prime" (p = 2g+1, where q is also prime) L> Avoid : when p-1 is "smooth" (splits into product of small primes), there are efficient algorithms for discrete log → A+ 128-bits of security, p is usually ~3072 bits (much longer keys → will motivate elliptic curve crypts) > In fact, more common to work with prime-order groups (e.g., a subgroup of prime order q in Zp[#] when p=2g+1)

Diffie-Hellman Key Exchange: Let G be a group of prime order of with generator g:

 \downarrow

(deter bey-divisation) details for now derive a key from derive a key from 9, 3⁷, 3³, 9^x* 3, 3^x, 3^{*}, 3^x

- <u>Claim</u>: An easesdropper who sees $g, g^{\chi}, g^{\vartheta}$ (but does <u>not</u> know χ or y) cannot derive the shared key (in particular, eaverdropper χ) should not be able to compute $g^{(3)}$).
- <u>Observe</u>: Security of protocol requires hordness of discrete log in G (why?). However, discrete log by itself may not be sufficient. We require that $g^{\chi g}$ is <u>hard</u> to compute given $g_1 g^{\chi}, g^{\chi} \longrightarrow$ this is the <u>Computational Diffie-Hellmon</u> (CDH) problem

<u>Computational Diffie-Hellman (CDH) assumption</u>: Let (G,g,p) ~ Group Gen (1?). Then, the CDH assumption holds in G if for all efficient adversaries A, $\Pr[x,y \stackrel{e}{=} \mathbb{Z}_p; h \stackrel{e}{=} A((G,g,p),g^x,g^z): h = g^{xy}] = \operatorname{regl}(\lambda)$

CDH assumption in a group G says given g, g^{*}, g^{*}, hard to compute g^{*t}. How do we construct a key-derivation function? Typically use a hash function $H: \{0, 13^* \rightarrow \{0, 13^*\}$ → For instance, shared key is $k \leftarrow H(g, g^x, g^y, g^{xy})$. To argue security of Diffie-Hellman key-exchange protocol, we need to assume something about H: - Option 1: Make the Hush-DH assumption: given g,g^{x},g^{y} , $H(g,g^{x},g^{x},g^{x})$ is indistinguishable from random - Option 2: Model H as a "random oracle" (an ideal object that implements a truly random function) In this model, if adversary cannot query H on (g.g*, g*, g*), then H(g,g*, g*, g*) is uniformly random and completely hidden from the view of the adversary.

L> Security of DH key-exchange thus follows from CDH assumption in the random oracle model

Diffie-Hellman key-exchange is an anonymous key-exchange protocol: neither side knows who they are talking to is valuerable to a "man-in-the-middle" attack

Alice	Bob	Alice	Eve Bob	Observe Eve can
<u>9</u> X		~~~~> <u>5</u>	\xrightarrow{x} g^{z_1}	now decrypt all of the messages
, <u> </u>		ٹو	2 gy	between Alice and
9 ^x y	Jary	4	12 JUN 3	Bob and Alice + Bob
J •	5	a ^{XZ} 2	g ¹⁰² g ³⁰	have the loca:

What we require: <u>authenticated</u> key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority). Son the useb, one of the parties will <u>authenticate</u> themself by presenting a <u>certificate</u>

> Discussed in greater detail in computer security / applied crypto course (ask in OH if this is interesting)

<u>Public-key encryption</u>: In symmetric encryption, only holder of secret key can encrypt. In public-key encryption, <u>everyone</u> can encrypt, and secret key is only needed for decryption. [Example application: encrypted email]

 Definition. A public-key encopytion (PKE) scheme consists of three algorithms (KeyCan, Encoppt, Decoppt) with the following properties:

 KeyCan (1²) → (pk, sk): Connectes a public key pk and a secret key sk.

 Encoppt (pk, m) → ct: Takes the public key pk and a message m and outputs a ciphertext ct.

 Decoypt (sk, ct) → m: Takes the secret key and a ciphertext ct and outputs a message m.

 We say the PKE scheme is correct if for all messages m,

 Pr[(pt, sk) ← Secret key cand) a ciphertext ct adversaries A,

 PKEAdu(A] = |Wo - W_1| = negl(A)

 where Wo is defined to be the output of the following experiment:

 oddressary

 maxing space dullenger

 Mode for A

 b'Effori's

 Eucoper(pk, mi)

Observations. For public-key encryption, semantic security implies CPA-security. [Follows via a hybrid anyment - check this!] · Semantically secure PKE schemes <u>must</u> be <u>randomized</u>. [Check this!]

PKE	from	Diffie	- Hellman	~ (EI(Samal	Encry	ption)	•			g ^x	Ę			— Õf	servatio	n: li	Shat if	we	reuse	- the	ى	
						1					ეშ						ę	same a	,× f	or malt	iiple		_
									V	. <			7				ş	serions	(;atic″∫	X₩≈+	Hellmon	-}
									gxy	5				gxy	Ξl	<u>lea</u> : Le	+ 5 [°]	^k be +	he a	public	hey a	and	
																v	و و	y ^{xy} to	hide	c the	-		
																m	محدومه	e.					

ElGanal Encryption. Let G be a group of prime order
$$p$$
. We construct a PKE scheme as follows:
KeyGen (1²): Sample $\chi \leftarrow \mathbb{Z}p$ and set $h = g^{\chi}$. [1st DH key-exchange message]
Output $pk = h$ and $sk = \chi$.
Encrypt (pk , m): Choose $g \leftarrow \mathbb{Z}p$. Output $ct = (g^{\chi}, H(g, h, g^{\chi}, h^{\chi}) \oplus m)$ [2nd DH key-exchange message]
 \mathbb{Z} assume $H : G \rightarrow \delta 0, 13^{\circ}$ and $m \in \delta 0, 13^{\circ}$
Decrypt (sk , ct). Write $ct = (cto, cto)$ and compute $cto \oplus H(g, h, cto, cto^{\chi})$

Correctness: Take any message
$$m \in \{0,13^n \text{ and } (pk,sk) \leftarrow KeyGen(2^{\lambda})$$
. If we compute $ct \leftarrow Encrypt(pk, m)$, we have
 $ct = (g^3, H(g, g^{\chi}, g^3, g^{\chi 3}) \oplus m)$. The decryption algorithm then computes
 $\left[H(g, g^{\chi}, g^3, g^{\chi 3}) \oplus m\right] \oplus H(g, g^{\chi}, g^3, g^{\chi \chi}) = m$

<u>Security</u>. Follows from CDH in the random oracle model.

<u>Proof (Sketch)</u>. Suppose we have adversary A that breaks semantic security. We use A to construct an adversary B that breaks CDH in G:

algorithm B		CDH challenger
algorithm A pk = (g,g ^R)	< (3, 3 ^x , 3 ³)	X, y e Zp
Mo, M, E fo, 13 ⁿ		
$\frac{(g^3, r)}{r \ll [o, (j^n)]}$		
H A can also ask		
to evaluate H(.)		

In the random oracle model, if A does not query H(Z) for any Z, then value of H(Z) is uniformly random to A. Thus, message is hidden information-theoretically unless A queries $H(\cdot)$ at $(g_1g^X, g^Y, g^Y, g^{XY})$. In this case, B learns g^{XY} and succeeds in answering the CDH challenge. \rightarrow Proof shows that the random oracle can be used to <u>extract</u> information from an adversary.

Security without random oracles? Make a stronger assumption.

Let p=2q+1 where p,q are prime. Let (i) be the subgroup of order q in Zp* [specifically, the subgroup of "quadratic residues" - G = {h \in Zp* : there exists x \in Zp* where h = x² (mod p)}]

The set of points on an "elliptic curve" over Trp [will discuss in greater detail in future week]

> In all of these groups, the best algorithm for solving DDH is to solve discrete log (seemingly a much harder problem!)

Relationship between assumptions:

DDH
$$\Rightarrow$$
 CDH \Rightarrow discrete log
strongest _______ weakest
assumption assumption

Security of Naor-Reingold. The Naor-Reingold construction is an augmented tree construction. Define

$$G_{NR}(\alpha, g^{\beta}) \rightarrow (g^{\beta}, g^{\alpha\beta})$$

Suppose that for all $Q = poly(\lambda)$, the following function is a secure PRG: $G'(\alpha_0, \alpha_1, ..., \alpha_Q) = (GNR(\alpha_0, g^{N}), ..., GNR(\alpha_0, g^{NQ}))$ $= (g^{\alpha_1}, g^{\alpha_0 \alpha_1}, ..., g^{\alpha_n}, g^{\alpha_0 \alpha_Q})$

Then, the Naor-Reingold construction is a secure PRF.

Proof (Skatch). We use a hybrid argument Hybo, ..., Hybr where evaluation in Hyb; work by replacing first i levels of the tree with uniformly random values: $G_{NR}^{(b)}(\alpha_{2,}) = G_{NR}^{(b)}(\alpha_{2,}) = G_{NR}^{(b)}(\alpha_{2,})$ Instead of computing $G_{NR}^{(o)}(\alpha_{1},\cdot)$ and $G_{NR}^{(1)}(\alpha_{1},\cdot)$, Hyb, НуЬо

But... on layer n, we need to replace 2ⁿ ≠ poly(2) number of values, which does <u>not</u> follow from the above assumption! L> Adversary only can see <u>polynomially-mony</u> outputs, so we never read to replace/simulate the entire tree, Only the paths that the adversary queries in the PRF security game. If adversary only makes Q = poly(2) queries, then at any level, we need to suitch at most Q nodes from pseudorandom to truly random, which follows from our assumption.

Thus, suffice to show that G is a secure PRG. To do so, we will rely on the DDH assumption.

Claim. If DDH holds in G, then G'(xo, x1, ..., xg) = (g^{d1}, g^{dox1}, ..., g^{dn}, g^{dox4}) is a secure PRG. Proof (\$466) We show that if there is a distinguisher A for G', then there is an adversary B that breaks the DDH assumption. Main challenge: Algorithm B is given a single DDH challenge (g, g^x, g^y, g^z) where z = xy or z e^g Zp and has to simulate a PRG challenge for A. The PRG challenge should be one of two possibilities: - Pseudorandom: (g^{y1}, g^{xy1}, ..., g^{yn}, g^{xyn}) where X, y1,..., yn e^g Zp - Random: (g^{y1}, g^{z1}, ..., g^{yn}, g^{zn}) where g₁,..., yn, z1, ..., zn e^g Zp

Essentially, algorithm B applies the random self-reduction for DDH Q-times to the DDH chullenge (using indupendent randomness) to simulate the PRG chullenge for A.