
CS65.CO/Week4,Number-TheoreticCryptography-

Previously , we saw how to use the conjectured hardness of the discrete logarithm problem to construct public
-

key

cryptography .

This week
, we look at another

popular class of number - theoretic assumptions .

We begin by describing some facts about working in a composited group .

Let N = pq be a product of two primes p , q .

Then
, IN = { Oil , . - -

,
N - 13 is the additive group

of integers
modulo N

.
Let 2nF be the set of integers that are invertible (under multiplication) modulo N

.

X E Int if and
only if god Cx ,

N) -

- 1

Since N -

-

pq and
p, of are prime , god(x ,

N) = I unless X is a multiple of p or q :
I Intl = N -

p
-

of
t 1 =

pg
-

p
-

of
t I = C

p
- Dlg - D = 91N)

←
Euler 's phi function

Recall Lagrange's Theorem :

for all X E ZN* : x
MN)

= 1 (mod N)
←
important :

"

ring of exponents
"

operate modulo GCN) = (p - 1) Cq - 17

Hard problems in composite
- order groups

:

- ⇐toeing :
given N'- pg

where p
and

of are sampled from a suitable distribution over primes , output p , q
-

Computing : Sample random X EEF .
Given

y
-

- X
'
(mod N)

, compute X Imod N)
.

↳ This problem is easy in Ipt l when 3 t
p

- D
. Namely , compute 3

"
(mod p

- D , say using
Euclid's algorithm ,

and

then compute y
'
"

cmod p)
= (x 35

'

Cmod p)
= X Cmod .pl .

↳
Why does this procedure not work in Eni

.

Above procedure relies on computing 3
" (mod I Init) = 3

" (mod 9cm)
But we do not know 91N) and

computing 91N) isashardas factoring N
. In particular, if we

know N and 91N)
,
then we can write

N -
-

PG [both relations hold over the integers){
een) -

- Lp - it Cool)

and solve this system of equations over the integers (and recover p, g)

Hardness of
computing

cube roots is the basis of the RSAassumpti :
distribution over prime numbers .

BSA#pt : Take p, q
← Primes

,
and set N -

-

pg .
Then ,

for all efficient adversaries A
,

Pr EXE Int ; y ← ACN
,
x) : y

'
= x) =

neg IG)
←

more generally , can replace 3 with
any e where gcdle.am/=1[

Hardness of RSA relies on 91N) being hard to compute ,
and thus

, on hardness of factoring
(Reverse direction factoring

⇒ RSA is net known)

RSA problem gives an instantiation of more general notion called a trapdoorpermutation :

FRSA : ZN* → zn*

Frsa (x) : = Xe (mod N) where god I N , e) = I

Given 41N)
, we can compute

D= e-' (mod 91N))
,

Observe that
given

d
,

we can invert FRSA :

FISA C x) : = xd (mod N)
.

Then
,
for all X E IF :

Fria (Frsa C x)) = Held = xed lmod " N "
= x

'
= x Cmod N)

,

Trapdoor permutations : A trapdoor permutation GDP) on a domain X consists of three algorithms !

- Setup (It) → (pp, td) : Outputs public parameters pp
and a trapdoor td

- F (
pp , X) →

y : On input the public parameters pp
and input X

, outputs y C- X

- F
- ' Hd

, y)
→ X : On input the trapdoor td and input y , output X E X

Requirements :

- Corsg : for all pp output by Setup :

- F Cpp
,

.) implements a permutation on X
.

- F
" Ltd

,
F C
pp, x)) = X for all X E X

.

-

Security : Flpp ,
a) is a

one-way
function f to an adversary who does not see the trapdoor)

"

Textbook RSA
"

(How NOI to encrypt) : Consider the following candidate of a PRE scheme from trapdoor permutations :

-

Key Gen (I
") : Sample Ipp , td)

← Setup (ID for TDP and set pk -
-

pp and sk = td

-

Encrypt Cpk, m) : Output Flpk , m)
-

Decrypt Csk , at) : Output F- ' (sk
,
et)

Correctness follows from correctness of TDP
.

How about security ? NI . I . Security of TDP says that inverting random element should be difficult
=

↳ Does not apply if messages chosen adversarially leg . ,
semantic security

definition)
↳ Does not say anything about hiding preimage (e.g. , F Cpp, x) can leak information about X so long

as leakage is not sufficient to fully recover X - this is a weaker propay than full in distinguishability)

2 . This scheme is deterministic : cannot be semantically secure !

NEVER use textbook RSA ! See HW2 also for additional attacks on textbook RSA and simple variants .

=

How to encrypt using TDP ? Need to leverage
" hard - to - inv "

property to obtain something indistinguishable from uniform
.

Idea :
Apply a random oracle to derive a pad to blind a message.

Let X be domain/range of TDP
, { o ,

is
"
be the message space and H? X → Eo , is

"
be a hash function (modeled as random oracle)

.

Key Ged I ") : Sapele Cpp, +d) ← Setup I 1A) and output plc -

pp
and Sk -

- td .

)
Important :

rtahedoMTDP
is only applied to

Encrypt Cpk , m) : Sample X EX . Output the ciphertext et = (F (pk , x) ,
m ① HCXD

.

-

elements , net to the

message (which is adversarially -

Decrypt Csk , et)
? Output Ct

,
④ H (F - ' (sk , Cto)) .

chosen)

Correctness : Follows by correctness of TDP . Namely
,
if et ← Encrypt (pk, m) ,

then Ct = (F Cpp , x) , m ④ HG)) and so

Decrypt Csk , at) = m to HG) ① HI (F - ' Ltd
, F Cpp , x)))

=
m to HG) to HG)

=
m

Security . Informally , given a ciphertext, message m is information -

theoretically
hidden from the adversary unless it makes a gm to the

random orate at input X Igiven only Flpp , xD .

Since X is chosen uniformly
,
such an adversary breaks security of TDF

.

Public - lay encryption
is the analog of symmetric encryption in the public - key setting .

What about authentication ? Can we define a

"

public
- lay

' ' MAG ?

↳ Concept of a digitalsignature .

Holder of secrtesigning can ! signatures ,
but everyone can publicly verify

signatures .

↳
Applications : software updates / distribution (patch is certified by developer and OS verifies before installing)

authenticated key exchange (server includes a signed certificate as proof of its identity during lay agreement)

Digital signature scheme : Consists of three algorithms :

-

Key Gen (I ') → (vk.sk) : Outputs a verification key vk and a signing key Sk

-

Sign Csk , m) → o : Takes the signing lay sk and a message m and outputs a signature o

- My (vk.im ,
o) → 0/1 : Takes the articular lay vk

,
a message m

,
and a signature on

,
and outputs a bit 0/1

Two requirements :

-

Correctness : For all messages me M
,
(vk.sk) ← Key Gen CIA) , then

Pr EV (vk
,
m

, Sign (skin)) = I] = I
.

IHonestly - gated signatures atways verify]
-

Untorgeabihity : Very similar to MAC security .
For lat efficient adversaries A

, SigAdv EAT = Pr Ew - I] = neglia) , where

W is the output of the following experiment :

fisherman
>

O ← Sign (skim) f
X = -

(m*
,
0*1

Let mi ,
. . .

, ma be the signing queries the adversary submits to the challenger Then
,
W = I if and only if : ballenger's

Verify (uk , m
't
,
Ot) = I and m* I { me , . . .

, ma }

Adversary cannot produce a valid signature on a nee message .

Digital signatures from TDPS (in the RO model)
.

Let M be the message pace and X be the domain /range of a TDP . Let Him → X be a hash function (mowed as RO)
.

-

KeyGen CE) : Sample Cpp td) ← Setup EH) for the TDP . Output vk =

pp
and sk= td .

- Sign Csk , m) : On input the signing key sk and a message m , output o ← F-
' Csk

,
H (m))

.

- Wy (Uk , m
,
o) : On input the verification lay Vk

,
the message m ,

and the signature Q output I lie
,
valid signature) if

Hlm) = App,
o) and 0 other win .

Correctness .
Follows by correct as of TDP . In particular, if o ← Sign Csk , m) ,

then F (pp , o) - F (pp , F-
I (td

,
Hlm))) = Hlm)

.

Secy . Intuitively ,
to forge a signature on a message m , adversary has to ink TDP on Hlm) and since Hlm) is uniformly random ,

this is difficult by security of the TDP
.
Actual security proof will Hy on

"

programming the random oracle
.

"

theorem .
If (Setup ,

F
,
F- ' I is a secure TDP and H is modeled as a random oracle

,
then (KeyGen , Sign . Verify) is a secure

signature scheme
.

Perth) . We show that if there exists a signature adversary A
,
then there is an adversary B that inverts the TDP

.

Algorithm B needs to simulate both random oracle queries
and

signing queries for A
.

Algorithm B TDP challenger
-

-1
-

÷ :÷:÷ .

/

set " ⇒

oracle queries ¥1
signing quwiesf-ggns.mg

[
x
*

these
queries - -tee 1-

algotrithm
B wins if

F (pp , IT -

-

y
*

Will make some simplifying assumptions withoutlossofgy :

Any adversary that does not conform
-

Algorithm A makes RO query on message m prior to a
signing query on me

to this schema can be converted into
-

Algorithm A makes RO query on message m* at some point in the game

)
one that is conforming

Algorithm B works as follows :

I
.
Let Q be a bound on the number of random oracle queries the adversary makes

. Algorithm B chooses a

random index it ← [Q] (this is where A will invert the TDP / produce its forgery) .

2
. Simulating the verification key vk : set vk =

pp .
two observations :

3 . When A makes its ith RO query
(on message m) :

- value of random oracle is

uniformly random (correctly
- if i = it : respond with the TDP challenge y
. www..ge .

. gamp, , random ×¥× and rep, with ya. app,
, , {

.

yay!;yqqm
, mama , ,

4.
When A makes a signing query for message m : knows the preimage of Hlm

)

I -

by assumption , A previously queried the random oracle on m (so signatures can be simulated)
Recall that A canet
Make signing query

on m* - if Hlm) was not the ith RO query , B can reply with Xm f Hcm,
simulator chooses values

of RO so that it can

the challenge message) I otherwise
,
B aborts the simulation) ←

since F- ' (td , Ym) = Xm }
f.SI?qqYitecansnoiS7tI+app

5
. If m* was RO

query
it

, algorithm B outputs O
*

as its response

Analysis :
-

Suppose we guess correctly (A queries
RO on m* in

query
it)

.
Then

,
all queries

answered perfectly and

Algorithm A outputs o * which is a valid signature on m
't with non - negligible probability .

This means that

F (pp , o*) = Hlm *) -

-

y! in which case B wins the TDP security game.

- If we guess wrong ,
then 13 fails .

-

SigAdv EB] = to TDP AdvEA]
← Q is number of queries A makes

,
and B guesses correctly with probability

to

Recap : - TDPS are useful building blocks for constructing public-key primitives (both PKE and digital signatures)
- TDPS can be built from the RSA assumption (

using composite- order groups and relies implicitly on the hardness of factoring)
- RSA / factoring gives the only known instantiation of TDB

↳ 0p#tio : Constructions from other assumptions?

