CS 6501 Week 5: Ellipic-Curve Cryptography
In previous weeks, we saw how to use the hardness of problems like discrete log, CDH, and DDH to construct public-key cryptography. In all of these cases, we require working over a suitable group where these assumptions plausibly hold. So far, we have mostly worked with a prime-order subgroup of \mathbb{Z}_{p}^{*} (where $p=2 q+1$).

But just how difficult is the discrete logarithm problem in \mathbb{Z}_{p}^{*} ?
$\tilde{O}(\cdot)$ notation suppresses polylogarithmic terms
\rightarrow Best known algorithm (based on general number field sieve (GNFS)) runs in time roughly $2^{\tilde{O}(\sqrt[3]{\log p})}$ [$2^{\tilde{(} \sqrt[3]{\lg p})}$ is a subexporential-time algorithm]
τ running time bounded by $2^{\left(n^{\varepsilon}\right)}$ for some $\varepsilon<1$.
\rightarrow Concretely, to get "128-bits" of security (e.i., security comparable to AES-128), recommendation is to use a 3092 -bit modulus \rightarrow public-key operations become substantially slower than symmetric ones
[Using RSA is no better... Also need comparably-sized modulus for security]
\rightarrow In fact, the best algorithm for factoring/RSA is also the GNFS and remarkably, advancements in better factoring algorithms have proceeded almost in lockstep with advancements in discrete log algorithms!
\longrightarrow Is this the best we can do? If I give you an arbitrary group \mathbb{G} of order p, how hard is discrete \log in \mathbb{G} ?
the GNFS is not a generic algorithm and works because the elements in \mathbb{Z}_{P}^{*} are integers
For "generic" algorithms (i.e., algorithms that use the group operation as a black box), Shoup showed that the best discrete \log algorithon runs in time $2^{\log 9 / 2}$ - namely, exponential in the size of the group.

Baby-Step/Giant-Step Algorithm: Let B be a group of prime order p with generator g Given a discrete log instance (g, h), the algorithm works as follows:

1. Let $t=\sqrt{p}=2^{\frac{\log p}{2}}$
2. Compute the sequence $a_{i}=g^{(i t)}$ for $i=0, \ldots, t-1$ ["giant" step]
3. For each $i=0, \ldots, t^{-1}$, check if $h \cdot g^{-i}=a_{j}$ for some $j=0,1, \ldots, t-1$ ["baby" step] \rightarrow If so output the discrete $\log x=j t+i$

To see why this algorithm works, observe that if $h={ }^{x}$, then we can always write $x=j t+i$ for $0 \leq i, j<t$ where $t=\sqrt{p}$.

Observe: this algorithm only requires a way to evaluate the group operation and does not need information on how the group is represented (this is a "generic" algorithm)

Running time of this algorithm is $\tilde{O}(\sqrt{p})$, and space complexity is also $\tilde{O}(\sqrt{p})$. Using Floyd's cyde finding ("slow pointer"/ fast pointer") algorithm, we can obtain an algorithm with the same running time but $\tilde{O}(1)$ space (Pollard's rho algorithm).
\rightarrow These generic algorithms for discrete \log match Shoup's lower bound for discrete log.
\rightarrow Question: Are there candidate groups where generic algorithms are the best-known algorithm? If so, we can potentially set the group six to be $p=2 \lambda=256$ (to get 128 -bits of security).

Ellipic-curve groups: a candidate group where the best known discrete \log aforithus are the generic ores
\rightarrow Studied by mathematicians since antiquity! [See work of Diophantus, circa 200 AD]
\rightarrow Proposed for use in cryptographic applications in the 1980s \rightarrow now is a leading choice for public-key cryptography on the web [another example where abstract concepts in mathematics end up having surprising consequences]

An elliptic curve is defined by an equation of the following form:

$$
E: y^{2}=x^{3}+A x+B
$$

where A, B are constants (over \mathbb{R} or \mathbb{C} or \mathbb{Q} or \mathbb{T}_{p})
[we will assure $4 n^{3}+2 B^{2}$ - roots (and the group law is wel-delefined) the curve
Example of an elliptic curve: $y^{2}=x^{3}-x+1$ (over the reals)
points where x - and y-coordinates are rational values

Consider the set of rational points on this curve egg., $(0, \pm 1),(1, \pm 1),(-1, \pm 1)$ [ave there other points?]

Surprising facts:

1. Take any two rational points on the curve and consider the line that passes through them. The line will intersect the curve at a new point, which will also have rational coefficients.
2. Take any rational point on the curve and consider the tangent line through that point. The line will intersect the curve at a new point, which will also have rational coefficients.

Thus, given two rational points, there is a way to generate a third rational point.
\rightarrow In fact, this operation essentially defines a group law (but with following modifications):

1. We introduce a "point at infinity" (eg., a horizontal line at $y=\infty$), demote \mathcal{O} (this is the idemity element)
2. The group operation (called the "chord and tangent" method) maps two curve points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ to a point R by first computing the third point that along the line correcting P, Q and reflecting the point about the X-axis. [Observe that the reflection ensures that \mathcal{O} is the identity)
\rightarrow Remarkably, this defines a group law on the rational points on the elliptic curve, and we can write down algebraic relations for computing the group law (somewhat messy but there is a closed form expression)

In cryptography, we work over finite domains, so we instead consider elliptic curves over finite feeds (rather than \mathbb{R} or \mathbb{C}). Specifically, we write

$$
E\left(\mathbb{F}_{p}\right)=\left\{x, y \in \mathbb{F}_{p}: y^{2}=x^{3}+A x+B\right\} \cup\{0\}
$$

No geometric interpretation of the group kw over \mathbb{T}_{p} (instead, define it using the algebraic definitions derived above)
$\rightarrow E\left(\mathbb{T}_{p}\right)$ still forms a group under this group law
How big is the group $E\left(\mathbb{T}_{\mathrm{p}}\right)$?
Theorem (Hasse). Let E be an elliptic care with coefficients in \mathbb{F}_{p}. Then

$$
\left|\mid E\left(\left(F_{p}\right)|-(p+1)| \leqslant 2 \sqrt{p}\right.\right.
$$

Thus, number of points on $E\left(\pi_{p}\right)$ is roughly $p \pm \sqrt{p}$

Thus, if we want a curve with roughly 2^{256} points (ie, a group with $\approx 2^{256}$ elements), it suffices to take $p \sim 2^{256}$ (256-bit prime). - naively, can compute in $B(p)$ time but this is not efficient!

But for cryptographic operations, we also reed to know the order of the group (and ideally, the order should be prime). Schoot shows how to efficiently compute the number of points on $E\left(\mathbb{F}_{p}\right)$ [in time $\left.O\left(\log ^{6} p\right)\right]$
\longrightarrow In practice, we have a set of standard elliptic curves that almost everyone uses (eng., p-256, p-384, Curve 25519)

In an elliptic-curse group, best algorithm for discrete \log are the generic ones (ey., running time $O(\sqrt{p})$), so we can use 256-bit curves to achieve 128 -bits of security - significantly better than working in \mathbb{Z}_{p}^{*} (or over RSA groups)!

Another advantage of elliptic curves: they often support additional structure that can be leveraged in many cryptographic applications
\rightarrow today, we will look at one specific example: pairing-based cryptography
prime order p
Definition. A (symmetric) pairing $e: G \times G \rightarrow G_{T}$ is a mapping with the following properties: [also referred to as a bilinear mag]

- Bilinearity: $\forall a, b \in \mathbb{Z}_{p}, g \in \mathbb{G}: e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- Non-degenerate: if g generates \mathbb{B}, then $e(g, g)$ generates \mathbb{G}_{T}
- Efficiency: there exits an efficient algoisthm that evaluates the mapping e

Initial application of pairings was for attacking discrete log over elliptic curve groups: can map computing discrete log in $E\left(\mathbb{F}_{p}\right)$ to computing discrete logs in $\mathbb{F}_{p} \alpha$ (for (hopefully) small α)
[algorithm due to Merezes, Okamoto, Vanstone, 1993] "called the "embedding degree" of the elliptic curve
"Bug \Rightarrow Feature": [Joux, 2000] [Boneh, Franklin, 2001] $\underbrace{\text { [J. }}_{21 \text { st century cryptograph!! }}$

Application 1: 3-party non-interactive key exchange [Joux, 2000]
Recall classic Diffie-Hellman key exchange:
Alice $\left[a \leftarrow^{R} \mathbb{Z}_{p}\right]$
Bob $\left[b \& \mathbb{Z}_{p}\right]$
where r is random
Security: $\left(g^{a}, g^{b}, g^{a b}\right) \approx\left(g^{a}, g^{b}, g^{r}\right)$ by DDH
Essentially relies on discrete log being a "1-linear" map

$\left[\begin{array}{l}\text { easy to compute linear relations in the exponent, but difficult to } \\ \text { compute quadratic relations }\end{array}\right]$

What if we had 3 parties? [Big open problem since Diffie-Hellman key exchange]

Alice can compute $e\left(g^{b}, g^{c}\right)^{a}$
Everyone sees $g^{a}, g^{b}, g^{c} \Longrightarrow$ Bob can compute $e\left(g^{a}, g^{c}\right)^{b}$
Charlie can compute e $\left(g^{a}, g^{b}\right)^{c}$
Shared key: e($g, g)^{a b c}$

Security: given g, g^{a}, g^{b}, g^{c}, require that $e(g, g)^{a b c}$ looks indistinguable from random:

$$
\left(g, g^{a}, g^{b}, g^{c}, e(g, g)^{a b c}\right) \approx\left(g, g^{a}, g^{b}, g^{c}, g^{r}\right) \quad \text { [Bilinear DDH (BDDH) assumption] }
$$

With a pairing, easy to compute quadratic relations in the exponent, but difficialt to compute cubic relations in the exponent
Beyond 3 parties? Seems very difficult!

- Possible using matilinear maps... several existing candidates, but all seem to be broken $\left[\begin{array}{l}\text { cannot instantiate key-ecchange } \\ \text { direct h }\end{array}\right]$
- Also follows from indistinguishability obfuscation [security questionable and extremely for from bang practical]

Even 3-party key exchange is not known from other assumptions [major open problem in lattice-based cryptography!]

