
CXE.EIliptic-curmcryp-gry.ly
In previous weeks , we saw how to use the hardness of

problems like discrete log ,
CDH

,
and DDH to construct

public - key cryptography .
In all of these cases

,
we require working over a suitable group where these assumptions plausibly

hold
. So far , we have mostly worked with a prime

- order subgroup of 2p* (where p
= 2g t 1)

.

f
042 notation suppresses

But just how difficult is the discrete logarithm problem in Ipt ? poly logarithmic terms

8 (Ffp)
↳ Best known algorithm (based on general number field sieve (GNFS)) runs in time roughly 2

I
log p is the bityayth

[2£ is a s¥pdime algorithm]
,ne ,

of the prime p
←

running
time bounded by 2 for some E s 1

.

↳
Concretely , to get

"

128 - bits
"

of
security leg . , security comparable to AES - 128)

,
recommendation is to use a 3092-b.it

modulus →
public

-

key operations
become substantially slower than symmetric ones

[Using RSA is no better . . . Also need comparably
- sized modulus for security]

↳ In fact , the best algorithm for factoring I RSA is also the GNFS and r¥ky ,
advancements in better

factoring algorithms have proceeded almost in lockstep with advancements in discrete log algorithms !

↳ Is this the best we can do ? If I give you an arbitrary group
G1 of order

p ,
how hard is discrete log in 6 ?

[the GNFS is not a generic algorithm and works because the elements in Ipt are integers

For "

generic
"

algorithms (i.e.
, algorithms that use the group operation as a black box)

, Shoup showed that the best

discrete log algorithm runs in time 219% -

namely , exponential in the size of the
group .

Babyp¥tStepAIghn : Let Gl be a group of prime order p
with generator g.

Given a discrete log instance Cg , h) ,

the algorithm works as follows :

I
.
Let t -

- Tf = 2121
(it)

2
. Compute the sequence ai = g for i = O

,
. . .

,
t - I ['giant

"

step]

3 .
For each i = O

, . . .

,
t
"

,
check if h .

g-
:

=

Aj for some j -
- 0,1 , . . .

, -2 - I [" baby
"

step]

↳ If so output the discrete log X=jtti

To see who this algorithm works
,
observe that if h =

×

,
then we can always write X = jt ti for OE i ,j

L t where t -

- Tp .

starting from KS?) ✓ h=g×more backwards until

finding aiaP¥⇒÷ . . .
Observe : this algorithm only requires a

way

go gt g
"

g
't

g
"

. . . } to evaluate the group operation

Xy and does not need information on

how the
group is represented

precompute all

of these values
(this is a

"

generic
"

algorithm)

Running time of this algorithm is 8 (Tp) ,
and space complexity is also 8 (Tp) . Using Floyd's cycle finding ("slow pointer

"

Hast pointer
")

algorithm , we can obtain an algorithm with the same running time but 811) space
(Pollard's rho algorithm) .

↳ These generic algorithms for discrete log match Shoup's lower bound for discrete log .

↳ Question : Are there candidate
groups where generic algorithms are the best-known algorithm ? If so , we can potentially

set the
group size to be p

= 2X = 256 tho get 128 - bits of
security

)
.

Hipsters : a candidate group
where the best known discrete log algorithms are the generic ones

↳ Studied by mathematicians since antiquity ! [See work of Diophantus , circa 200 AD)
↳
Proposed for use in cryptographic applications in the 1980 s

→
now is a leading choice for public - key cryptography on the

web Canother example where abstract concepts in mathematics end
up having surprising consequences

]

I
non - zero to ensure there are no repeated

An elliptic curve is defined by an equation of the following form :

roots C and the group
law

E : y
'

= X
'
t Axt B I we will assume that 4A 't 27132 to] is well - defined)

-

where A ,B are constants (over TR or G or Q or Ttp) "

discriminant
"

of
the curve

Example of an elliptic curve :
y
'

= X
'

- X t p (over the reals)

[points where X - and y - coordinates

are rational values

Consider the set of rational points on this curve

•€÷e;•% e.g ,
to

,
II)

,
Cl

,
II)

,
C-I

,
It) Care there other points

?]

i. Sts • :

:

two rational points on the curve and consider the
i i
i i line that

passes through them . The line will intersect the curve_¥S at a new point , which will also have rational coefficients .

T y • , on ,
Q 2 . Take any

rational point on the curve and consider the tangent

✓ line through that point .
The line will intersect the curve at\

a new point , which will also have rational coefficients
.

Thus
, given two rational points ,

there is a way to generate a third rational point .

↳ In fact
,
this

operation essentially defines a group law (but with following modifications) :

1
.
We introduce a

"

point at infinity
" (e.g. , a horizontal line at y

-
- o)

,
denote O (this is the identity element)

2 .
The group operation (called the " chord and tangent

"
method) maps two curve points P -

- Guy ,
) and Q = (xz , ya) to

a point R by first
computing the third point that along the line connecting P

,
Q and reflecting the point

about the X - axis
.

[Observe that the reflection ensures that 0 is the identity)
↳

Remarkably, this defines a group
law on the rational points on the elliptic curve

,
and we can write down algebraic relations

for
computing the group law (somewhat messy but there is a closed form expression)

In cryptography , we work over finite domains
,

so we instead consider elliptic curves over finite fields (rather than TR or G)
.

Specifically , we write

E (Ttp) = I x. y E Fp : y2=x3tAxtB } o { O }

No
geometric interpretation of the group law over Ttp (instead .

define it
using

the algebraic definitions derived above)
↳ E (Ttp) still forms a group under this group

law

How big is the group E (Ftp) ?

Titles)
.

Let E be an elliptic carve with coefficients in Ttp .

Then

I IECFPII - Gott) / Earp

Thus
,
number of points on Etp) is roughly p ± Tp

Thus
,
if we want a curve with roughly

2256
points (ie , a group with a 2256 elements)

,
it suffices to take p

~ 22% (256 - bit prime) .

f- naively ,
can compute in ④(p) time but this isnt efficient !

But for cryptographic operations, we also need to know the order of the group (and ideally , the order should be prime) .

Schoof

shows how to efficiently compute the number of points on E (Ftp) Cin time 0 (log
6
p)]

↳ In practice, we have a set of standard elliptic curves that almost everyone uses (e.g., P -256 ,
P - 384

,
Curve 25579)

In an elliptic . curve group , best algorithm for discrete log are the generic ones leg . , running
time 0 CTp)) , so we can use 256 - bit curves

to achieve 128 - bits of
security

-

significantly better than working in Ipt for over RSA
groups) !

Another advantage of elliptic carves : they often support additional structure that can be leveraged in many cryptographic applications
↳
today , we will look at one specific example :

pairing - based cryptography

prime order p
it x

Definition . A C
symmetric) pairing e : Gt G → Gt is a mapping

with the following properties
: Calso referred to as a bilinear map]

- Bi linearity : the
,
b C- Ip , g EG : e Cga , gb) = elg , g)

ab

- Non -

degenerate : if g generates G
,
then elg.gl generates Gt

-

Efficiency : there exists an efficient algorithm that evaluates the mapping e

ab

•

.

" '

Initial application of pairings was for attacking discrete log over elliptic curve groups
: can map computing

discrete log in

F- (Ttp) to
computing discrete logs in Fpd (for (hopefully) small a)

(algorithm due to Menezes
,
Okamoto

,
Vanstone

,
1993] ← called the

"

embedding degree
"

of the elliptic carve

¥⇒Feature "
: (Joux

,
2000) I Boneh

.
Franklin

,
2001]

-

21st century cryptography !

Applications : 3- party non-interactive key exchange [Joux
,
2000]

Recall classic Diffie-Hellman key exchange
:

Alice (at Zp)
a

Bod C b ee Ep) [
where r is random

8- security : Lga, gb , gab) E Iga, gb.gr) by DDH

← Essentially relies on discrete log being a
"

I - linear
"

mapt t
gab gab ⇐spy

,
to gamma

linger
,
! at ions in the exponent , but difficult to

)

What if we had 3 paries ? [Big open problem since Diffie-Hellman key exchange]

Alice Ca Eap] Alice can compute elgb.ge)
a

g

bagby
5

Everyone sees ga , gb, go ⇒ Bob can compute elga , go
)b

Charlie can compute elga , gb)
'

Bod I be Zpl Charlie Ect Ep] Shared key : elg, g)
abc

-
go

Security : given g , ga , gb , go , require
that elg ,g)

abc
looks indistinguable from random :

(
g , ga, gb , go, ecgglabc) E I

g , ga , gb , go , gr) [Bilinear DDH CBDDH) assumption I

With a
pairing , easy

to compute quadratic relations in the exponent , but difficult to compute cubic relations in the exponent

Beyond 3 parties
? Seems

very difficult!

• Possible Using multilinear . . . several
existing

candidates
,
but all seem to be broken (diane!If

instantiate key - exchange)
-

Also follows from indistinguishability obfuscation I security questionable and extremely for from being practical I

Even 3- party key exchange is not known from other assumptions
[major open problem in lattice - based cryptography

!)

