CS 6501 Week 6: Pairing-Based Cryptography
Application 2: Short Signatures [Boon, Lam, Shechem, 2001]
Existing signature candidates: RSA signatures: 2048 bits $\widetilde{O}\left(\lambda^{3}\right)$ bits long
[128-bit Security level]
ECOSA signatures: 512 bits 4λ bits long
Schoor signatures: 384 bits 3λ bits long
BLS signatures: 256 bits 2λ bits long
[shortest practical/ /implemented signature]

$$
\operatorname{key} \operatorname{Gen}\left(1^{\lambda}\right) \rightarrow(v k, s k): s \mathbb{R}^{R} \mathbb{Z}_{p} \quad \text { sk: } s
$$

Sign $(s k, m) \rightarrow \sigma: \sigma \leftarrow H(m)^{s} \quad$ where $H: M \rightarrow \mathcal{G}$ is a hash function (modeled as a random oracle)
Verify $(v k, m, \sigma)$: check $e(\sigma, g) \stackrel{?}{=} e\left(H(m), g^{s}\right)$
Correctness: $e(\sigma, g)=e\left(H(m)^{s}, g\right)=e(H(m), g)^{s}=e\left(H(m), g^{s}\right)$ by bilinexity
Security: From CDH in G in the random oracle model:
CDH assumption: given $g, g^{a}, g^{b} \in \mathbb{G}$, compute $g^{a b} \in \mathbb{C}$
Proof Sketch: Very simar to security proof for FDH:

- Given CDH challenge $\left(g, g^{a}, g^{b}\right)$, reduction sets verification bey to $v k=\left(g, g^{a}\right)$
- Assume without loss of generality that adjessacy queries random oracle before each signing query
- Choose one of the RO queries and program response to g^{b} [correct forger is then $\mathrm{g}^{a b}$]
- Remainder of signing queries can be simulated since reduction chases the exponents lo can compute $H\left(m^{2}\right)$

Properties: -Signature is a single group element: ~ 256 bits (using point compression) [asymtotioaly: 27 bits]

- Signature scheme naturally supports threshold saving, aggregation (ie, compressing multiple signatures into one)

Threshold BLS signatures: Protect secret key by spiting it into many independent "shares" and giving shares to different parties

Recall signing in BLS: output $\sigma \leftarrow H(m)^{s}$ where $a \in \mathbb{Z}_{p}$ is secret key
To throsthdize BLS, choose $s_{1}, \ldots, s_{n} \& \mathbb{Z}_{p}$ suit that $s_{1}+s_{2}+\cdots+s_{n}=s \in \mathbb{Z}_{p}$
\rightarrow Each party's individual signing key is S_{i}, and signs using standard BLS
\rightarrow Given $\sigma_{1}=H(m)^{s_{1}}, \ldots, \sigma_{n}=H(m)^{\text {sn }}$, we can compute

$$
\sigma=\prod_{i \in(N]} \sigma_{i}=\prod_{i \in(m)} H(m)^{s_{i}}=H(m)^{\sum_{i}\left(m a n s^{s_{i}}\right.}=H(m)^{s}
$$

\rightarrow Security: Each party is implementing a BLS scheme (so partial signatures σ_{i} are unforgeable)

Puzzle: This is an " n-out-ot- n " threshold signature scheme (ie., need n out of n signatures to reconstruct).
Can we build a "t-out-of-n" threshold signature scheme (where any subset of t signatures suffice to reconstruct)? Will revisit when we discuss Shamir secret sharing.

Aggregating BLS signatures: BLS signatures support a property called aggregation:
given mesage-signature pairs $\left(m_{1}, \sigma_{1}\right), \ldots,\left(m_{t}, \sigma_{t}\right)$ under vj, can compress into a single BLS signature σ that authenticates $\left(m_{1}, \ldots, m_{t}\right)$
Suppose we have $\left(m_{1}, \sigma_{1}\right), \ldots,\left(m_{t}, \sigma_{t}\right)$ where each $\sigma_{i}=H\left(m_{i}\right)^{s}$.
Observe that:

$$
\prod_{i \in[n]} \sigma_{i}=\prod_{i \in(n)]} H\left(m_{i}\right)^{s}=\left[\prod_{i \in[n]} H\left(m_{i}\right)\right]^{s}
$$

Them, define the aggregate signature $\sigma=\Pi_{i \in(-n)} \sigma_{i}$. To verify σ on $\left(m_{1}, \ldots, m_{t}\right)$, compute

$$
\begin{gathered}
e(g, \sigma) \stackrel{?}{=} e\left(g^{s}, \prod_{i \in(G)} H\left(m_{i}\right)\right) \\
\| \\
e\left(g,\left[\pi_{i \in\left(m_{)}\right)} H\left(m_{i}\right)\right]^{s}\right) \quad e\left(g^{s}, \pi_{i \in\left(n_{1}\right)} H\left(m_{i}\right)\right)
\end{gathered}
$$

Very useful property when we have many signatures and want to compress them (eeg, certificate chains, Bitcoin transactions, etc.)
Open Question: Can we obtain even shorter signatures?
Lower bound: for λ bits of security, need at least λ bits
Feasibility result: Using indistinguisinability obfuscation, we can do this, but no other constructions known...
Source of difficulty: Need to consider exponential-time adversaries (security against 2^{λ}-time adversaries)

$$
\rightarrow \text { genic discrete } \log \text { algorithm is reason for } 2 \lambda \text { size in } 325
$$

Application 3: Identity-based encryption
Beyond public-key encryption: pairing-bosed cryptography enabled for the first time new forms of advanced cryptographic primitives beyond traditional publicthey encryption and digital signatures

Going beyond pablic-key encryption: with traditional PKE, sender needs to know public key of reepient in order to encrypt
Question: Can the public key be an arbitrary string (egg., email address, username, etc.)?
Identity-bosed encryption [Shamir, 1984]: encrypt with respect to identities
\rightarrow major open problem resolved by Bonch-Fraakkin in 2001 using parings (and dis concurrently by Cocks in 2001)
global public
Schema: $\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(m p k, m s k)$
Encrypt (mpk, id, m) \rightarrow ct $_{m} \quad$ [encrypts message m with respect to identity id]
Key Gen $(m s k, i d) \rightarrow$ skid \quad Generates a secret decryption key for the identity id]
Decrypt $\left(s k_{i d}, c t_{m}\right) \rightarrow m / \perp \quad$ [decryption should output m if c_{m} is encryption to id and \perp otherwise]
\longrightarrow challenge of IBE is to compress exponential number of (public/secret) key-pairs into a single set of short public parameters

Correctness: for all messages m and identities id, if we generate (mpk, msk) $\leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$ and $\operatorname{skid} \leftarrow$ KeyGen (msk, id),

$$
\operatorname{Pr}[\operatorname{Decrypt}(\text { skid, Encrypt }(m p k, i d, m))=m]=1
$$

Security of IBE:

$$
\operatorname{IBEAdv}[A]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|
$$

\rightarrow Require that A does not query for a decryption key for its target identity id* (otherwise can trivially break security)

Boneh-Frankin IBE Scheme:

$$
\begin{aligned}
\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(m p k, m s k): & s \stackrel{R}{\mathbb{Z}} \mathbb{p} \\
& m p k: h=g^{s} \quad m s k: s \\
\text { Encrypt }(m p k, i d, m) \rightarrow c t_{m}: & r \stackrel{R}{セ} \mathbb{Z}_{p} \\
& c t_{m}=\left(g^{r}, m \cdot e\left(h^{r}, H(i d)\right)\right.
\end{aligned}
$$

How to decrypt?

$$
e\left(h^{r}, H(i d)\right)=e\left(g^{r s}, H(i d)\right)=e(g^{r}, \underbrace{\left.H(i d)^{s}\right)}
$$

$$
\begin{aligned}
& \text { included in secret bey } \\
& \text { ciphertect }
\end{aligned}
$$

ciphertect for identity id

Compare with ElGamal:

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}\right) \rightarrow(p k, s k): \quad s \stackrel{R}{R}^{R} \mathbb{Z}_{p} \\
& p k: h=g^{s} \quad s k: s \\
& \text { Encrypt }(p k, m) \rightarrow c t_{m}: r \stackrel{R}{\leftarrow} \mathbb{Z}_{p} \\
& c t_{m}=\left(g^{r}, m \cdot h^{r}\right)
\end{aligned}
$$

Key idea in pairing-based cryptography: exploit bilinearity: two ways to compute each quantity
using public

BLS signatures:
verification relation: $e\left(H(m)^{s}, g\right)=e\left(H(m), g^{s}\right)$
computed using
the secret signing key part of the
public vein public verification parameters

Boreh-Franklin IBE:
decryption relation: $e\left(g^{r}, H(i d)^{s}\right)=e\left(\left(g^{s}\right)^{r}, H(i d)\right)$
secret bey
public parameters
Security of Boneh-Franklin IBE: Will rely on the bilinear DDH (BDDH) assumption (and modeling H as a random oracle)

$$
\left(g, g^{a}, g^{b}, g^{c}, e(g, g)^{a b c}\right) \approx\left(g, g^{a}, g^{b}, g^{c}, e(g, g)^{r}\right) \text { where } a, b, c, r \notin \mathbb{Z}_{p}
$$

Proof idea. Given BDDH challenge ($g, g^{a}, g^{b}, g^{c}, T$):
this is the algorithm/ /adversary

- Set $m p k=h=g^{a}$ (so a is the corresponding secret key, unknown to the simulator)
- Assume (withuast loss of generality) that adversary queries RO on each identity before making the corresponding kay query or challenge query
- Guess which RO query corresponds to challenge identity id*
- On RO query id $\neq i d^{*}$: choose random $x^{\&} \mathbb{Z}_{p}$ and reply with $\left.g^{x}\right\}$ In both cares, the response is
- On RO query id $=i d^{*}$: reply with g^{b} (from the challenge)
- On a key query for identity id $\neq i d^{k}$: reply with $\left(g^{a}\right)^{x}$ where x is the exponent chosen for $H(i d)$
\rightarrow Observe that by construction, skid $=g^{a x}=\left(g^{x}\right)^{a}=H(m)^{a}$, so these keys are correctly simulated
- For the challenge ciptertext, reply with ($g^{c}, m \cdot T$) where g^{c}, T are from the challenge
\rightarrow Observe that if $T=e(g, g)^{a b c}$, them in particular

$$
T=e(g, g)^{a b c}=e\left(g^{a c}, g^{b}\right)=e\left(\left(g^{a}\right)^{c}, g^{b}\right)=e\left(h^{c}, H\left(\left(d^{*}\right)\right),\right.
$$

exactly as required in the red scheme.
Therefore, under the BDDH assumption, the challenge cipterterct is independent from two random group elements (independent of the message), and so security holds.

