<u>CS 6501 Week 6</u>	: Pairing - Based C	ryptography	
Application 1: Short stangt	1005 Break Ing Shadrow	2-01]	
<u>Application 2</u> : Short signat		~	
Existing signature candid	Eanal .		
[128-bit security level]	Schnorr sign atum		
	BLS signatures		[shortest proutica] / implemented signature]
$KeyGen(1^{2}) \rightarrow (vk, sk)$): s ∉ Zp sl		
	v بر ⁸ بالا	$k: (g, g^{2})$	
$\operatorname{Sign}(\operatorname{sk}, \operatorname{m}) \rightarrow 0$. $0 \in \mathbb{N}$	H(M) where $H: H'C =$	7 G is a hash tunction Imoduled	as a random oracle.
Verity (Vk, m, o) · Check	$e(\sigma, q) = e(H(m), q)$	k: S k: (g, g ^S) → G is a hash function (modeled)	
<u>Correctness</u> : $e(\sigma,g) = e($	(H(m) ⁵ , g) = e(H(m), g) ⁵	$= e(H(m), g^{S})$ by <u>bilineasity</u>	
Security: From CDH in G	in the random oracle m	odel:	
CDH assou	mption: given g, g ^a , g ^b E	G, compute g ^{ab} é G	
<u>Proof Sketch</u> : Very similar to	,		
		gb), reduction sets verification	
- H35w	me without loss of general	ity that adversary queries random or and program response to g ^b	acle before each signing guery
Choose	e one of the KU queries	and program response to g	[correct torgery is then grand
			poses the exponents (so can compute $H(m)^n$)
Properties: - Signature is a si	nelle group element: ~5	256 bits (using point compression)	[asymtotically: 27 bits]
			ompressing multiple signatures into one)
Threshold BLS signatures:		splitting it into many independent	"shares" and giving shares to different
	parties	Ф Ф Ф	
		$\begin{array}{ccc} P_1 & P_2 & P_3 \\ sk_1) & (sk_2) & (sk_3) \end{array}$	Goals: I. Given 01,02,03, should be able to
		m σ_1 m σ_2 σ_3 m	obtain signature of on m (with respect to vk)
		m Signer m	2. Given a subset of the key-shares
		(vk)	(sk., sk2, sk3), should not be able
			to sign, (with respect to vk)
		output o < H(m) where a & Zp	
		se Si,, Sr e Zp such that S	•
		al signing key is si, and signs u	
	$-$ Given $\sigma_1 = H(m)^3$	$, \dots, $ $O_n = H(m)^{s_n}$, we can compute	e Dieron Si
		$\sigma = \prod_{i \in [n]} \sigma_i = \prod_{i \in [n]} H(m)^{s_i} = H(m)^{s_i}$	$= H(m)^{-}$
			o partial signatures 0; are unforgeable)
	Laur put	in a albertar lind or Dr. 2 Schence (par nul signations of and antipagements

Puzzle: This is an "n-out-ot-n" threshold signature scheme (i.e., need n out of n signatures to reconstruct).

Can we build a "E-out-of-n" threshold signature scheme (where any subset of t signatures suffice to reconstruct)? L> Will revisit when we discuss Shamir secret sharing.

<u>Aggregating BLS signatures</u>: BLS signatures support a property called aggregation:

given message-signature poirs
$$(m_1, \sigma_1), ..., (m_t, \sigma_t)$$
 under vk,
Can compress into a single BLS signature σ that authenticates $(m_1, ..., m_t)$
Suppose we have $(m_1, \sigma_1), ..., (m_t, \sigma_t)$ where each $\sigma_1 = H(m_1)^S$.
Observe that:
 $\prod \sigma_1 = \prod H(m_1)^S = \left[\prod H(m_1)\right]$
 $ie(n)$ $ie(n)$

Thun, define the aggregate signature $\sigma = \pi_{iern} \sigma_{i}$. To verify σ on $(m_{1,...,m_{t}})$, compute $e(g, \sigma) \stackrel{?}{=} e(g^{S}, \pi_{iern} H(m_{i}))$ 11 $e(g, [\pi_{iern} H(m_{i})]^{S})$ $e(g^{S}, \pi_{iern} H(m_{i}))$

Very useful property when we have many signatures and want to compress them (e.g., certificate chains, Bitcoin transactions, etc.)

Open Question: Can we obtain even shorter signatures?

Lower bound: for 2 bits of security, need at least 2 bits

Feasibility result: Using indistinguishability obfuscation, we can do this, but no other constructions known... Source of difficulty: Need to consider exponential - time adversaries (security against 2ⁿ - time adversaries)

L> genuic discrete log aborithm is reason for <u>27</u> size in BLS

Application 3: Identity-based encryption

Beyond public-key encryption: poiring-based cryptography enabled for the first time new forms of <u>advanced</u> cryptographic primitives beyond traditional public-key encryption and digital signatures

<u>Coing beyond public-key encryption</u>: with traditional PKE, sender needs to know public key of recipient in order to encrypt <u>Question</u>: Can the public key be an <u>arbitrary</u> string (e.g., email address, username, etc.)?

Identity-based encryption [Shamir, 1984]: encrypt with respect to identities

Is major open problem resolved by Bonel-Franklin in 2001 using parrings (and also concurrently by Cocks in 2001)

 $\frac{Correctness}{for all massages m and identities id, if we generate (mpk, msk) \leftarrow Setup(1^{2}) and skid \leftarrow KeyGen(msk, id), Pr[Decrypt(skid, Encrypt(mpk, id, m)) = m] = 1$

using public using secret parameters parameters

