
CSMWeekq-knowkdgeperoofsystems.IN
a zero - knowledge proof system ,

a prover can convince the verifier that some statement X is true (without revealing

anything more about x )
.

In many cases
,

we want a stronger property
: the

prover actually
"
knows

"

washy a statement is true (e.g. , it knows a
" witness

" )

For instance , consider the following language :

£ = { h E IG I IX E Ip : h =g× } = Gl Note : this definition of I implicit. defines an NP relation R :

[
group

of order
p

t
generator of IG R ( h

,
X ) = 1 ¥-3 h -

- g
X E G

In this case
,
all statements in Gl are true ( ie . ,

contained in L )
,
but we can still consider a notion of

proving knowledge of

the discrete log of an element h E Gl -

conceptually stronger property
than proof of membership

Philosophical question
: What does it mean to

" know
"

something
?

u

If a
prover

is able to convince an honest verifier that it knows
"

something,
then it should be possible to extract that

quantity
from the prover .

Definition.
An interactive proof system LP

,
V ) is a proof of knowledge for an

NP relation R if there exists an efficient

extractor E such that for any x and
any prover

ptp-roofofknowkdge.is parameterized by a specific

relation R ( as opposed to the language Lf

Prlw ← E'
"

C x ) : Rtx , w ) -
- I ] zPrkp* ,

v ) I x ) -

- I ] - e

more generally'S E
knowledge error

could be polynomially smaller

Trivial proof of knowledge : prover
sends witness in the deer to the verifier

↳ In most applications, we additionally require zero - knowledge

Note : knowledge is a strictly stronger property than soundness

↳ if protocol has knowledge error E ⇒ it also has soundness error E lie
. a dishonest

prover convinces an honest verifier of
a

false statement with probability at most E)



assume g , he G

provingknowledgeofdiscreteloglschnorrbprotoc.co# ~
where Gi has prime order q

Suppose prover wants to prove it knows x such that high " lie
. prover demonstrates knowledge of discrete log of h base g)

_Pe verifier

i if c- CE Ep
2- ← rt Cx E-

-

lluverify
that g

"
= u . h

'

Completeness : if z -

- rt ex
,
then

get = grtox = grgcx = u . he
zero knowledge only required to hold against an honest verifier

# leg . ,
view of the honest verifier can be simulated)

Honest-VerifierZ-ero-knowkdgy.ba ild a simulator as follows Ifamiliar strategy : run the protocol in
"

reverse
" ) :

on input Lg , h) :

1. sample Z E Ip
2. sample CE Ip [ Uniformly random challenge

3
.
set u = 54ha and output ( u , c

,
Z)

uniformly random J
t chosen so that

lgsimualsatedhetraieaftraisr.ipdentiw.at/h
distributed

, verifier
group element since GZ = u . he -

z is uniformly random
relation satisfied by a

( valid proof )

What goes wrong if the challenge is not sampled uniformly at random lie .

,
if the verifier is dishonest)

Above simulation no longer works ( since we cannot sample Z first)
↳ To get general zero - knowledge , we require that the verifier first comet to its challenge (

using
a statistically hiding commitment)

for simplicity, we assume

if P* succeeds with probability I

Knowledge : Suppose P
't
is (possibly malicious ) prover that convinces honest verifier with probability 1

.
We construct an extractor as follows:

I. Run the prover
P* to obtain an initial message U

.

2 . Send a challenge C
,
£ Ep to P? The prover replies with a response Zi .

3 .

"

Rewind
"

the prover
Pt so its internal state is the same as it was at the end of Step I

.
Then

,
send another

challenge Cz E Ip to Pt
.
Let Zz be the response of Pt.

4. Compute and output X = ( Z ,
- za ) ( c , - cis

'
e Ep .

Since P 't
succeeds with probability I and the extractor perfectly simulates the honest verifier's behavior

,
with probability I

,
both be

, Ci ,
2-

,)
and Lu

, Cz , Zz) are both
accepting transcripts .

This means that

g
Z '

= u . h " and
g
⇐

= a . h
"

⇒
gn! = §!÷ ⇒ g

Zi tax
= g

Zz tax

←
with

overwhelming probability,

⇒ X = ( z
,

- zz) ( c , - Cz)
"

C- Ip 4th

Thus
,
extractor succeeds with

overwhelming probability .



(Boneh - Shoup ,
lemma 19.2)

If P " succeeds with
probability E

,
then need to rely on

"

Rewinding Lemma" to argue that extractor obtains two
accepting

transcripts with probability at least EZ - Yp
.

How can a
prover

both proveiknowledge and yet be zero - knowledge at the same time ?

↳ Extractor operates by
"

rewinding
"

the prover lit the
prover

has good success probability , it can answer most challenges correctly .

↳ But in the real (actual) protocol , verifier Canet rewind ( i.e . . verifier only sees prover on fresh protocol executions ) , which can

provide zero - knowledge .

Identificationprotoeolfromdiscrete.to#. vanilla password -based authentication

suppose a client wants to authenticate to the server f does not provide active

- security in
↳ God :

security against active adversaries (adversary sees contents of the server and can interact arbitrarily with the client ) this setting

can directly build such a scheme from Schnorr's protocol :

f-
client's

. .
. .

✓ Public verification key

client ( x ) secret (credential) server (g , h=g× ) Essentially , the discrete log of h (base g) is

-
the client's "

password
"

and instead of sendingc-

- the password in the clear to the server
,
the client

protocol is precisely 3- round
proves in zero - knowledge that it knows X

Schnorr proof of knowledge of discrete log

Correctness of this protocol follows from completeness of Schnorr 's protocol

(Active)
security

follows from knowledge property
and zero - knowledge

↳
Intuitively : knowledge says that

any
client that successfully authenticates must know secret X

zero - knowledge says that interactions with honest client ( ie
,
the

prover) do not reveal anything about X

( for active security, require protocol that provides general zero - knowledge rather than just HV 2K )

More general view : S -

protocols
(Sigma protocols)

prover ( x ,
g. h

-

y
'

r
Verifier

& "
commitment "

verifier has no

- ( secret raid oneness ( Arthur - Merlin proofs)
V# "

challenge
" (random string ,

"

public - coin
")

-

r t EX Properties : l . Completeness- "

response
" -

protocol flow resembles a I 2 . Honest - Verifier Zero - knowledge

Protocols with this structure (commitment -

challenge
-

response
) are called £proIoob (Sigma protocols)

3.Proofofknowkdge.LI

Many variants of Schnorr protocols : can be used to prove knowledge of statements like :

- Common discrete log
: X such that hp =

g? and hz=gF (useful for building a verifiable random function )
- DD H tuple : Ig ,

u
, v. w ) is a DDH tuple

-

namely , that a- ga , v=gP ,

and w=gdP for a
, p E Ip

↳ Useful for
proving

relations on El Gamal ciphertext leg . ,
that a particular El Gamal ciphertext encrypts either 0 or 1)

↳ Useful building block in constructions of DDH - based oblivious transfer ( OT ) protocols
- Naor - Pinhas ( more details next lecture

↳ Reduces to
proving common discrete log

: ( g , um ,
w) is a DDH tuple if and only if there is an X such that V=g

" and w
-

-
UX



-

showing that h
.

-

- gin and ha -

- gi :
-

forever verifier

r Ez Ui -

- gr
P z>

c Eep
C
-

Z = rt CX
-

check that g ! = u
.

. hi and
g?

= Uz . hi

Completeness and HVZK follows as in Schnorr 's protocol.

Knowledge : Two scenarios :

/ . If prover
uses inconsistent commitment ( ie

. ,
U
, =L ,

" and Uz=gz
"

where r
,
¥ rz )

,
then over choice of honest verifier 's randomness

,

then
prover can only succeed with probability at most Yp :

Z = r
,
t X ,

C = rz t Xzc (if verifier accepts)
-

u
,

-

- g
" ✓ high taiga begin

This means that

.

( r . - ra) = tlxz - x
, )

If r
, # rz

,
there is at most 1 c C- Ep where this relation holds

.

Since c is uniform over Ip ,
the verifier accepts with

probability at most Yp

2 . If
prover

succeeds with Ipo
ly
Cx) probability , then it must use a

"

consistent
"

commitment
.

Can build extractor just as in Schnorr's

protocol . Knowledge error larger by additive Yp term (from above analysis) .

If we want to prove
the ANI of many statements , then we can

prove
each one in sequence .

What if we want to
prove

the 01 of
many statements

.

The difficulty is not revealing which statement is true ( or in the case of proof of knowledge ,
which

witness the
prover

knows)
.

We will work with the following : Prover wants to show that it knows either x
, or xz such that h

,

'

- gt ' or high
↳ Stated : (g , hi , ha)

"
I out of 2 discrete logs

"

Wite : X , or xz where h
,

-

- gt '
, high

Starting-point : Run Schnorr protocol in parallel :

prover
verifier

r
, ,rz⇒p Pebley : Honest prover only knows one of X

,
or Xz so it cannot

2- Ci
,
Ca # Zp correctly answer both challenges (unless it knew both X ,

and Xz)
Zi - r

,
t C

, X , , 7 , = rztcixz
-

key idea : Prover will simulate the transcript it does not know
.



Suppose prover
knows Xi

.

Then
,
it will first run the Schnorr simulator on input (g, had to obtain transcript ( iz ,

Ez , E ) .

↳ But challenge Ca may
not match Ea

. . .

To address this
, we will have the verifier send a single challenge CE Ep and

the
prover

can pick c
,
and Cz such that c

,
t ca = C E Ip

prover ( x , ) verifier

(in .ci
,
E) ← Slg,

ha)

r
,
E Zp

~

U l U2
-

# CE Zp
c
,

c- c- 5 ¥57
I

Z , ← r
, tax ,

r

check that

g
"

= u
,
hi'

g
"

-
- ai hi

"

Completeness, HVZK and proof of knowledge follow
very similarly as in the proof of Schnorr 's protocol .

( NIZK )
N¥¥¥ : Can we construct a zero - knowledge proof system where the proof is a single message from the

prover
to the verifier ?

prover ( Xo ) verifier ( x )
- Why do we care ? Interaction in practice

| is expensive!

t
b C- Eo , is

[ languages that can be decided by a

Unfortunately , NIZKS are only possible for sufficiently
-

easy languages ( i.e . . languages in Bpp )
.

randomized polynomial - time algorithm ( w -hip -I

↳ The simulator (for 2K property) can essentially be used to decide the language

if X E L : S ( x ) → IT and it should be accepted by the verifier ( by 2K ) } NIZK impossible for NP unless

if X IL : Stx ) → Tl but I should not be accepted by verifier ( by soundness ) NP E BPP (unlikely ! )

Impossibility results tell us where to look ! If we cannot succeed in the
"

plain
" model

, then move to a different one :

common random (reference string (CRS ) model : random oracle model :

4 Prom and verifier have
/

IT f f access to shared randomness

IT
Could be a uniformly random 1¥

verifier ✓ -

- - string or a structured string)

in this model , simulator is allowed to choose line
.
.
simulate ) the CRS in in this model

,
simulator can

"

program
" the random

conjunction with the proof , gu , soundness , defined with respect to an

forage
(again ,

as , mum , between nea , power and we

honestly - generated CRS (asymmetry between the capabilities of the real
y

simulator )

prover and the simulator ]

⇒ In both cases ,
simulator has additional "

power
"

than the real prover ,
which is critical for enabling NIZK constructions for NP

.



FSh¥ri¥ : from E - protocols to NIZK in RO model

Recall Schnorr 's protocol for proving knowledge of discrete log:

owner (g ,
h -

- g
"

,
x) verifier (g. g×)

-

In this protocol , verifier 's message is uniformly random

ur GFP µ ) ( and in fact ,
is

"

public coin
" - the verifier has re

# CER Ep secrets )

2- ← rt Cx #
- #

verify that g
"

= u . h
'

Key# :
Replace the verifier 's challenge with a

hash function H : 10,13
*

→ Ip
Namely , instead of sampling CE Ep ,

we sample c ← H (g ,
h
, u) .

←

prover can now compute this quantity on its own !

SecurityofFSham :

/. Completes : Same as Schnorr 's protocol

2. Zero-K=ledge : same as in Schnorr 's protocol ; namely ,
simulator samples CE Zp, 2- £ Ep , computes u

,
and then programs

RO at

Cg, h , u ) to c .

3. Knowledge : Construct extractor as follows : given (possibly malicious) prover Pt :

I
. Run P* to obtain proof IT = Lu

,
Z ) where challenge c = H (g.h , a) at verification time

↳ Note that at some point , P* must have queried the random oracle on input (g ,
h , a) I need to argue

that with high
2 .
Run Pt again , but when it queries RO

, use different responses probability , p* will

↳ Can extract discrete log as before output proof with same

committed value u

(follows by
"

forking lemma
" )

signatures from discrete log in RO model ( Schnorr ) :
- Verification key is Ig,h=g×) and signing key is X

-

To sign a message rn , signer proves knowledge of X ( discrete log of h) using Fiat - Shamir ( and where challenge is derived from

message ) : e - g. , c ← H ( g ,
h

, u ,
m)

.

-

Security essentially follows from security of Schnorr 's identification protocol (together with Fiat - Shamir )
↳

specifically , challenger answers signing queries using the ZK simulator (programming RO as needed for consistency )
↳ forged signature on a new message m is a pnoofofkn#dge of the discrete log ( can be extracted from adversary )

More generally , any S - protocol can be used to build a signature scheme using the Fiat - Shamir heuristic (by using the message

to derive the challenge via RO )

Length of Schnorr's signature
: Vk : (g , h=g×) o : (gr , c = HCG , h.gr , m)

,
Z -

- rt Cx ) verification checks that GZ -
- g- he

-
Sk : x

can be computed given
other components, so ⇒ lol = 2 - 161 ( 512 bits if 161=2256 ]
do not need to include



But
, can do better

. . .
observe that challenge c only needs to be 128 - bits ( the knowledge error of Schnorr is YKI where C

is the set of possible challenges) , so we can sample a 128 - bit challenge rather than 256 - bit challenge .

Thus
,

instead of sending

( gr , Z )
, instead send ( c

,
Z ) and compute g

'
= 9Th' and that c

-
- H (g. h.gr , m) .

Then resulting signatures are 384b

128 bit challenge L
t

256 bit group element

digital signature algorithm / elliptic - curve DSA
[ TLS protocol #

In practice, we use a variant of Schnorr 's signature scheme called DSA / ECDSA
but we use it because Schnorr

↳ larger signatures ( 2 group elements - 512 bits) and proof only in
"

generic group
" model (

was patented . . . until 2008
]

Important : Schnorr signatures ( and DSA IECDSA) are randomized , and security relies on having good randomness

↳ What happens if randomness is reused for two different signatures
?

Then
, we have

0 ,
= (g

'

, 4- Hlg, h.gr , ma) , Zi -

- r tax ) ) Z
,

- z ,
= ( c , - a) x ⇒ x = ( c .

- ca )
"
( Zi - Zz)

Oz = (g
"

, Cz = Hlg , h.gr, ma) ,
Zz -

- rtczx )

This is precisely the set of relations the knowledge extractor uses to

f and in some bed Bitcoin wallets recover the discrete log X lie
,
the signing key) !

↳ in PlayStation 3
,
the randomness was a fixed constant ! Enables hackers to deliver arbitrary firmware updates to device !

Deterministic : We want to replace the random value r E Ip with one that is deterministic
,
but which does not compromise security

↳ Derive randomness from message using a PRF
.

In particular, signing key includes a secret PRF key K
,
and

signing algorithm computes r ← FCK, m) and o ← sign ( skim ; r)
.

↳ Avoids randomness reuse Innis use vulnerabilities
.


