
CS 6222: Introduction to Cryptography Spring 2020

Homework 3: Authenticated Encryption and Public-Key Cryptography

Due: March 18, 2020 at 5pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp20/static/homework.tex

You must submit your problem set via Gradescope. Please use course code MB84NW to sign up.

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the computing
IDs of all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1. Understanding Definitions [20 points]. Throughout this problem, you should assume that
secure PRFs and secure collision-resistant hash functions exist. You may cite examples and constructions
from class (or lecture notes) without proof.

(a) Give an example of a CPA-secure encryption scheme where the ciphertexts are not pseudorandom
(i.e., the ciphertexts are not indistinguishable from uniformly random strings). Remark: This shows
that CPA-security only says that the ciphertext hides the message; it does not mean that ciphertexts
look like random strings, and in many schemes, the ciphertext will not look like a random string.

(b) Give an example of an encryption scheme that is CCA-secure but not an authenticated encryption
scheme. Remark: This shows that the converse of the statement “authenticated encryption implies
CCA-security” is false.

(c) Give an example of a collision-resistant hash function that is no longer collision resistant if you drop
the last bit of the output. Remark: This shows that even dropping a single bit of the output of a CRHF
can break collision resistance.

Problem 2. Hash-then-Encrypt [20 points]. The Android KeyStore uses “hash-then-CBC-encrypt” to
construct an authenticated encryption scheme to generate and manage cryptographic keys for Android
applications. Abstractly, the scheme operates as follows: Let (EncCBC,DecCBC) be a randomized CBC-
mode encryption scheme built from a block cipher F : K×X →X . Let H : X≤L →X be a collision-resistant
hash function. Define the following candidate authenticated encryption scheme (Enc,Dec):

• Enc(k,m): Output c ←EncCBC(k, H(m)‖m).

• Dec(k,c): Compute (t ,m) ←DecCBC(k,c) and output m if t = H(m) and ⊥ otherwise.

In the following, assume that X = {0,1}n and L ≥ 2.

(a) Show that (Enc,Dec) does not provide ciphertext integrity.

https://www.cs.virginia.edu/dwu4/courses/sp20/static/homework.tex
https://gradescope.com/
https://www.cs.virginia.edu/dwu4/courses/sp20/info.html

(b) Show that (Enc,Dec) is not CCA-secure. Recall that for encryption schemes over a variable-length
message space, the adversary can only query the encryption oracle on pairs (m0,m1) where m0 and
m1 have the same length.

(c) Would the above problems go away if the Android KeyStore had used randomized counter mode
encryption instead of CBC-mode encryption? Give a brief explanation.

Both attacks show that the Android KeyStore does not provide authenticated encryption. These attacks
were discovered in January 2016 and Google has confirmed that the encryption scheme will be removed
from the system.

Problem 3. Commitment Schemes from Discrete Log [16 points]. A commitment scheme is a digital
analog of a “sealed envelope.” Specifically, a sender can commit to a message m and send the resulting
commitment c to a receiver (i.e., seal the message in an envelope). The commitment c should not reveal
anything about the committed value m. Later on, the sender can open up the commitment and convince
the receiver that c is indeed a commitment to the message m (i.e., open up the envelope and recover the
original message). The commitment scheme is hiding if c hides the message m and is binding if the sender
cannot open the commitment c to any message m′ 6= m. In this problem, we will construct a commitment
scheme from the discrete log assumption:

• Public parameters: Let G be a group of prime order p and let g ,h ∈ G be arbitrary elements of G
(that are not the identity element).

• Commitment: To commit to a message m ∈ Zp , sample r
R←− Zp and output the commitment

c ← g mhr .

• Open: To open the commitment c to the message m, the sender gives (m,r) to the receiver and the
receiver checks that c = g mhr .

(a) Show that the above commitment scheme is perfectly hiding (i.e., the commitment c does not leak
any information about the committed message m). Namely, show that given the commitment c ∈G,
every candidate message m′ ∈Zp is equally likely (over the randomness of r). One way to show this

is that for every m′ ∈Zp , there is a unique r ′ ∈Zp such that c = g m′
hr ′

.

(b) Show that the above commitment scheme is computationally binding assuming hardness of discrete
log in G. Namely, show that if an efficient adversary can output a commitment c together with
openings (m,r) and (m′,r ′) such that g mhr = c = g m′

hr ′
and m 6= m′, then the adversary can also

compute the discrete log of h base g . In other words, if the sender can open the commitment in two
different ways, then it can also compute the discrete log of h in G.

Remember to give a brief explanation why any inverses you take actually exist.

Problem 4. Encrypted Group Chat [20 points]. Suppose a group of n people (denoted P1, . . . ,Pn) want
to set up a shared key for an encrypted group chat. At the end of the key-exchange, everyone within the
group should know the key, but an eavesdropper on the network should not. We will use the following
variant of Diffie-Hellman over a group G of prime order p and generator g :

• At the beginning of the protocol, P1 chooses s
R←−Zp . We will view P1 as the group administrator

that all of the other parties know.

• Each of the other parties Pi (2 ≤ i ≤ n) samples ri
R←−Zp and sends xi ← g ri to the group administra-

tor P1. The administrator P1 replies to Pi with xs
i .

• The group key is then defined to be k ← H(g s), where H : G→ {0,1}λ is a hash function.

Both the group description (G, p, g) and the hash function H are public and known to everyone (both the
protocol participants and the eavesdropper).

(a) Show that both the group administrator P1 and each of the parties Pi (2 ≤ i ≤ n) are able to efficiently
compute the group key.

(b) We say that the group key-exchange protocol is secure against eavesdroppers if no efficient adversary
who sees the transcript of messages sent by the honest parties P1, . . . ,Pn is able to distinguish the
group key k from a uniform random string over {0,1}λ, except perhaps with negligible probability.
If we model H as an “ideal hash function” (i.e., random oracle), it suffices to argue that the shared
Diffie-Hellman secret g s is unguessable to any efficient eavesdropper A:

Pr[A(x2, xs
2, . . . , xn , xs

n) = g s] = negl(λ),

where xi = g ri and r2, . . . ,rn , s
R←− Zp . This means that an eavesdropper who only observes the

messages sent by the honest parties cannot guess g s , and correspondingly, the shared key H(g s) is
uniformly random and unknown to the adversary. Show that under the CDH assumption in G, the
shared Diffie-Hellman secret g s in the group key-exchange protocol above is unguessable. Namely,
show that if there exists an efficient adversary A that can predict the Diffie-Hellman secret in the
above key-exchange protocol, then there exists an efficient algorithm B that breaks CDH in G. Hint:
Your algorithm B may need to invoke A more than once. Remember to compute the advantage of the
adversary you construct.

Problem 5. Collision-Resistant Hashing from RSA [14 points]. In this problem, we will show how to
construct a collision-resistant hash function from the RSA assumption. Let N = pq be an RSA modulus

and take e ∈N to be a prime that is also relatively prime toϕ(N). Let u
R←−Z∗

N , and define the hash function

HN ,e,u : ZN × {0, . . . ,e −1} →ZN where HN ,e,u(x, y) = xe uy ∈ZN .

In this problem, we will show that under the RSA assumption, HN ,e,u defined above is collision-resistant.
Namely, suppose there is an efficient adversary A that takes as input (N ,e,u) and outputs (x1, y1) 6= (x2, y2)
such that HN ,e,u(x1, y1) = HN ,e,u(x2, y2). We will use A to construct an efficient adversary B that takes as

input (N ,e,u) where u
R←−Z∗

N and outputs x such that xe = u ∈ZN .

(a) Show that using algorithm A defined above, algorithm B can efficiently compute a ∈ZN and b ∈Z
such that ae = ub (mod N) and 0 6= |b| < e. Remember to argue why any inverses you compute will
exist (or alternatively, if they do not exist, then B can directly break RSA).

(b) Use the above relation to show how B can efficiently compute x ∈ZN such that xe = u. Hint: Since
|b| < e and e is prime, gcd(b,e) = 1. Now, apply Bezout’s identity. Note that B does not know the
factorization of N , so it is not able to compute b−1 (mod ϕ(N)).

(c) Show that if we extend the domain of HN ,e,u to ZN × {0, . . . ,e}, then the function is no longer collision-
resistant.

Problem 6: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide does not affect your score. To receive the extra
credit for this problem, you must submit your homework to Gradescope (with the provided template) and
properly assign all problems to their respective pages.

Optional Feedback [0 points]. Please answer the following optional questions to help us design future
problem sets. You do not need to answer these questions. However, we do encourage you to provide us
feedback on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

