
Thus far
, we have assumed that parties have a shade key. Where does the shared key come from?

Approached : have a key- distribution center CKDC)

shared key between KBC and each party Pi
if Pi wants to talk to Pj :

-

Pi sends nonce ri (replay prevention) and identifier idi to Pj
-

-

Pj chooses nonce Rj and identifier idj to Pi and KDC

Ike In - KDC samples kij and givesL V J

P , Pz - - ' Pn often call Ci ← Enc (ki
,Enc , kij) } to Pia

''ticket
"

t, ← MAC (ki
,mac ,

(ri
, rj , idi, idj , Ci)

Cj
← Enc (Kj , Eric , kij)

tj ← MAC lkj.mn. c , Cri , rj , idi , idj, g))
} " B'

nonce's needed to ensure
" freshness " for session (no replays) and identifiers

needed to bind session key kij to identities idi
, idj

Basic design for Kerberos - only requires symmetric primitives
-

Drawback : KDC must be fully trusted (knows everyone's keys) and is single point of failure (no session setup if KDC

goes offline!)

Bublic-luyyyptograph.fi Session setup / key - exchange without a KDC

Diffie-Hellman key exchange (example) - will be more precise later :
-

Assume we have a fixed prime p and a value g E { 1,2. . . . , p
- I } (these could be specified in a cryptographic standard)

Alice Bobe

X E {1,2. . . . , p - I} y
E {1,2. . . . , p-is

x

Ee
,

GY (mod p)
c-

compute g×Y = Cg'd)
"
(mod p) compute god =

t
(mod p)

↳
shared secret : got
#

-

Assumption : given only (g, p) , g
"
, g
't
, it is difficult to compute g×Y (computational Diffie-Hellman assumption]

↳ better be the case that computing logarithms base- g be difficult [discrete logarithm problem]
leg. , given g. g

't

,
cannot compute x)

To understand this more broadly, we will need some math background. We discuss some key facts from number theory and

abstract algebra below :

Definition. A group consists of a set G together with an operation * that satisfies the following properties:
- Closer : If g , ,g£ Gl , then g.*gaE G
-

Associativity : for all g. , ga, g, E G, g,
* (gigs)

= Cg , * ga) * gs
-

Identity : There exists an element e E G such that e * g
-
- g

-

-

g
* e for all g

E G

-

Inverse : For every element gE 6 , there exists an element g-
'
E G such that g.

* g-
'
= e

-

- g-
' *
g

In addition
,
we say a group is commutative (or abelian) if the following property also holds :

-Commutative : For all go , ga E G , g. * ga
= gig,

f-
called "multiplicative

"

notation

Notation : Typically ,
we will use

"

.

"

to denote the group operation (unless explicitly specified otherwise)
.
We will write

y
' to denote g

-

g
-

g
- - -

g (the usual exponential notation)
.

We use
"

I
"

to denote the multipartite .

-

X times

Ix¥e¥ps : (TR
,
t) : real numbers under addition

(I
,
t) : integers under addition

(Ip ,
t) : integers modulo p under addition (sometimes written as Z/p2]

There , p is prime
T#¥f2p* (an important group for cryptography) :

Zp* = { x E Ep : there exists g C- Ep where Xy = 1 (mod p))
t the set of elements with multiplicative inverses modulo p

