Thus far, se have assumed that parties have a shared key. Where does the shared key come from?
Approach 1: have a key-distibution center (KDC)
shared key between $K D C$ and each party P_{i}
of P_{i} wants to talk to P_{j} :

- P_{i} sends nonce r_{i} (replay preventer) and idemitifer id i to P_{j}
- P_{j} chooses nonce r_{j} and identities id j to $P i$ and $K D C$
- KDC samples $k_{i j}$ and gives

$$
\begin{aligned}
\text { often calla } \\
\text { a "ticket" }
\end{aligned}\left\{\begin{aligned}
c_{i} & \leftarrow E n c\left(k_{i}, \text { Enc }^{\prime}, k_{i j}\right) \\
t_{i} & \leftarrow \operatorname{MAC}\left(k_{i}, \operatorname{Mac},\left(r_{i}, r_{j}, i d_{i}, i_{j}, c_{i}\right)\right.
\end{aligned}\right\} \text { to } P_{i}
$$

nones needed to ensure "freshness" for session (no replay) and identifiers needed to bind session bey $k_{i j}$ to identities id, id j

Basic design for Kerberss - only requires symmetric primitives

- Drausbock: KDC must be folly trusted (knows everyone's keys) and is single point of failure (no session setup if KDC goes offline!)

Public-key cryptogataty: Session setup / key-exchange without a KDC
Dfffie-Hellman key exchange (example) - will be more precise later:

- Assume we have a fixed prime p and a value $g \in\{1,2, \ldots, p-1\}$ (these could be specified in a cryptographic standard)

$$
\begin{aligned}
& \text { Alice }
\end{aligned}
$$

-Assumplian: given only $(g, p), g^{x}, g^{y}$, it is difficult to compute $g^{x y}$ [computational Diffic-Helman assumption]
\rightarrow better be the case that computing logarithms basely be difficult [discrete logarithon problem] (eeg., given g, g^{x}, cannot compute x)

To understand this more broadly, we will need some math background. We discuss some key facts from number theory and abstract algebra below:

Definition. A group consists of a set \mathbb{G} together with an operation * that satisfies the following properties:

- Closure: If $g_{1} g_{2} \in \mathbb{G}$, then $g_{1} * g_{2} \in \mathbb{G}$
- Associativity: For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}, g_{1} *\left(g_{2} * g_{3}\right)=\left(g_{1} * g_{2}\right) * g_{3}$
- Identity: There exists an element $e \in \mathbb{G}$ such that $e^{*} g=g=g * e$ for all $g \in \mathbb{G}$
- Inverse: For every element $g \in \mathbb{G}$, there exists an element $g^{-1} \in \mathbb{C}$ such that $g^{*} g^{-1}=e=g^{-1} * g$ In addition, we say a group is commutative (or abelion) if the following property also holds:
- Commutative: For all $g_{1}, g_{2} \in \mathbb{C}, g_{1} * g_{2}=g_{2} * g_{1}$

Notation: Typically, we will use "." to denote the group operation (unless explictly specified otherwise). We will write g^{x} to denote $\underbrace{g \cdot g \cdot g \cdots g}_{x \text { times }}$ (the usual exponential notation). We use " 1 " to denote the multiplicative identity.

Examples of groups: $(\mathbb{R},+)$: real numbers under addition
$(\mathbb{Z},+)$: integers under addition
$\left(\mathbb{Z}_{p},+\right)$: integers modulo p under addition [sometimes written as $\mathbb{Z} / p \mathbb{Z}$]
The structure of \mathbb{Z}_{p}^{*} (an important group for cryptography):
$\mathbb{Z}_{p}^{*}=\left\{x \in \mathbb{Z}_{p}\right.$: there exists $y \in \mathbb{Z}_{p}$ where $\left.x y=1(\bmod p)\right\}$
τ the set of elements with multiplicative inverses modulo p

