Thus far, we have assumed that parties have a shared key. Where does the shared key come from?

Approach 1: have a key-distribution center (KDC)

shared key between KDC and each party P;
if P, wants to talk to Pj:
- P; sends nonce r; (replay promitian) and identifier id; to P;
- P; chooses nonce r; and identifier id; to P; and KDC
- P; chooses nonce r; and identifier id; to P; and KDC
- P; chooses nonce r; and gives
P; Pz · Pn often called c;
$$\leftarrow$$
 Enc(k;, Enc, kij) ; to P;
a "ticket" t: \leftarrow MAC(k;, MAC, (r;, rj, id;, idj, c;) ; to P;
c; \leftarrow Enc(k;, Enc, kij) ; to P;
c; \leftarrow Enc(k;, Enc, kij) ; to P;
c; \leftarrow MAC(k;, MAC, (r;, rj, id;, idj, c;) ; to P;
t; \leftarrow MAC(k;, MAC, (r;, rj, id;, idj, c;) ; to P;
nonces needed to ensure "freshnes" for session (no replaye) and identifiers

needed to kind session key kij to identities idi, idj

Basic design for Kerberos - only requires symmetric primitives

- Drawback: KDC must be fally trusted (knows everyone's keys) and is single paint of failure (no session setup if KDC goes offline!)

Public-key cryptography: Session setup / key-exchange without a KDC

Diffie-Hellman key exchange (example) — will be more precise later:

- Assume we have a fixed prime p and a value g G {1,2,..., p-1} (these could be specified in a cryptographic standard)

Alice

$$\chi \notin \{1, 2, ..., p-1\}$$

 $g^{\chi} (mod p)$
 $g^{\vartheta} (mod p)$

<u>Assumption</u>: given only (g,p), g^R, g^B, it is difficult to compute g^{XB} [compatational Diffie-Hellman assumption] better be the case that computing logarithms base g be difficult [discrete logarithm problem] (e.g., given g, g^X, cannot compute X)

To understand this more broadly, we will need some math background. We discuss some key facts from number theory and abstract algebra below:

<u>Definition</u>. A group consists of a set G together with an operation * that satisfies the following properties: - <u>Closure</u>: If $g_{1},g_{2}\in G$, then $g_{1}*g_{2}\in G$ - <u>Associativity</u>: For all $g_{1},g_{2},g_{3}\in G$, $g_{1}*(g_{2}*g_{3}) = (g_{1}*g_{2})*g_{3}$ - <u>Identity</u>: There exists an element $e\in G$ such that e*g = g = g*e for all $g\in G$ - <u>Inverse</u>: For every element $g\in G$, there exists an element $g^{-1}\in G$ such that $g*g'_{1} = e = g'*g$ In addition, we say a group is commutative (or abelian) if the following property also holds: - <u>Commutative</u>: For all $g_{1},g_{2}\in G$, $g_{1}*g_{2} = g_{2}*g_{1}$ <u>Notation</u>: Typically, we will use "." to denote the group operation (unless explicitly specified otherwise). We will write g^{*} to denote $g\cdot g\cdot g\cdot g\cdots g$ (the usual exponential notation). We use "1" to denote the <u>multiplicative</u> identity. <u>*</u> times

Examples of groups: (TR, +): real numbers under addition (Z, +): integers under addition (Zp, +): integers modulo p under addition [sometimes written as Z/pZ] here, p is prime The structure of Zp (an important group for cryptography): Zp = {x \in Zp : there exists y \in Zp ohere xy = 1 (mod p)] 1 the set of elements with multiplicative inverses modulo p