
What are the elements in 2p* ?

µ
greatest common

divisor

Bntty : For all positive integers x.y C- 2
,
there exists integers a , b C- 2 such that axt by -- god(x, y) .

Corollary : For prime p , Ipt = { 1,2 , - - -

, p
- I }

.

¥ . Take any X
E { 1,2. . . . , p

- 13
. By Beaut's identity , god (x ,p) = 1 so there exists integers a, b C- 2 where I = axtbp .

Modulo
p , this is ax = I (mod p) so a

-
- x
- ' (mod p) .

Coefficients a, b in Beaut's identity can be efficiently computed using the extended Euclidean algorithm :

Eudideanalgorithm_ : algorithm for computing ged (a, b) for positive integers a> b :

relies on fact that god Ca , b) = ged ( b, a @od BD :
to see this : take any a > b

↳ we can write a = b- qtr where q > I is the quotient and

O E r < b is the remainder

↳ d divides a and b ⇐ d divides b and r

↳ god(a ,b) = god(b , r) = god(b, a (mod b))

gives an explicit algorithm for computing god : repeatedly divide :

god (60,27) : 60 = 2712) t 6 ( q -- 2 , r -- 6] us god (60,27) = god (27 , 6)
← ←

27 = 6 (4) t 3 ( q -- 4 , r =3] → god (27,6) = god (6,3)
←←
6 = 3 (2) t O ( q =L , r = O] → god(6,3) = god ( 3 , O ) =3

"

rewind
"

to recover coefficients in Beaut's identity :
60 = 2712) t 6 f 6=60

- 2712) yFILTH! / 271694/+3 → 3=27-6.4
-

27 - (60 - 2712114
algorithm ←←

6 = 3 (2) t O = 27 (9) t 6044)
T →
coefficients

Iterations : O(loga) - ie, bit -length of the input (worst case inputs : Fibonacci numbers]

Implication : Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)



[
defined to be the identity element

f- cyclic groups
are commutative

Definition .
A group G is cyclic if there exists ager g such that G = {go , g

'

.
. . .

, g
'"" }

.

Definition. For an element GE G , we write (g) ={ go.gl . . . . , g'"
" } to denote the set generated by g (which need not be the

entire set. The cardinality of Lg) is the order of g lie,
the size of the

"

subgroup
" generated by g)

Example. Consider IF
= { 1,2, 3,4, 5,63 . In this case

,
↳ means that good = 1

(27 = { 1,2 ,
4} ( 2 is not a generator of 25k) cord (2) =3

(3) = { 1,3 , 2,6, 4,53 ( 3 is a generator of ZF ) cord (3) = 6

tagmeme . For a group 6, and any element g
E G

,
cord (g) 1161 (the order of

g is a
divisor of 161)

.

↳ For 2p* , this means that ordlg) I p- I for all g E G

CoroHary(FermaTheorem) : For all x C- Ipt , XP
"

= 1 (mod p)

Proof . 1215×1 = I { 1,2 . . . . , p-ist =p - I f for integer ko

By Lagrange's Theorem, ord (x) / p - I so we can write p- I
= k . ord (x) and so XP" = (xordtx))

"
= 1k = 1 (mod p)

implication : suppose X E Ipt and we want to compute XY E 2p* for some large integer y
→
p

↳ we can compute this as

×y = ×Y (mod P
- t)

(mod p)

since XP" = I (mod p)
↳ Specifically , the exponents operate modulo the other of the group

↳
Equivalently : group Ig> generated by g is isomorphic to the group (2g, t) where q = ord (g)

(g) I ( 2g , t)

g
" t> x

X times

Notation : g
"

denotes

g-g-i.gg-X
denotes (gx)

"

( inverse of group element gx ]

g×
"

denotes GH
")

where X
" computed mod cord (g) - need to make sure this inverse exists!

Compqpe¥ : In cryptography , the groups we typically work with will be large leg. , 2256 or 2
"" )

- size of group element
(# bits) : ~ log 161 bits (256 bits / 2048 bits)

- Group operations in Ipt : log p bits per group element

addition of mod p elements : O (log p)

multiplication of mod p values : naively Oltogp)
karatsuba OClog

""

p)

Schionhage - Strassen (GMP library) : O (log p log log p log log log p)
best algorithm 040g p log log p) [2019]

↳ not yet practical ( > 24096 bis to be faster . . . )

exponentiation : using repeated squaring
:

g , g
'

, g
"

, y
'
, . . . , GHS " , can implement using OGog p)

multiplications ( O (logs p) with naive multiplication]
↳ timeIspace trade-offs with more precomputed values

division (inversion) : typically 0 (log
'

p) using Euclidean algorithm (can be improved)



Computationalp¥ : in the following, let ① be a finite cyclic group generated by g with order q
-

Di¥m : sample x ⇐ 2g

given h=g×, compute X
- Compi¥ffieHe¥D) : sample X.y

9- Iq

given gx , g't , compute g×Y
-DecisionalDiffie-HeHman(DDt# : sample X.y ,

r t2g
distinguish between Lg, gx , g'd , g

't ) vs . Cg, gx, gud , gr )

Each of these problems translates to a corresponding computational assumption :

c-e.g.
, q = 2X

Definition
.

Let 6 = 4g) be a finite cyclic group of order q (where q is a function of the security parameter X)
The DDH assumption holds in ① if for all efficient adversaries A :

Pr lag Eap : A ( g, g
'

, god , g'd ) -- I ) - Prfxy , reap : Alg , gx.gY.gr/=17/--negllx)
The CDH assumption holds in 6 if for all efficient adversaries A:

Prexy Ekg : Algy's gut) = g'd) -

- neglect
The discrete log assumption holds in G if for all efficient adversaries A :

Prix Ekg : Alg , gx) = x] = negltx)

Certainly : if DDH holds in G ⇒ CDH holds in Gl ⇒ discrete log holds in G

& %?
Major open problem : does this hold?there are groups where CDH

believed to be hard, but DDH is
Can we find a group where

discrete log is hard
but CDH is easy ?

easy

Instantiations : Discrete log in Ipt when p is 2048
-bits provides approximately 128- bits of security

↳ Best attack is General Number Field Sieve (GNFS) - runs in *me 20 ⇒ time

Much better than brute force - 2/08 P [cube root in exponent not ideal !

↳ Need to choose p carefully ← having small prime factors if we want to double security,
T leg., avoid cases where

p
- I is smooth) need to increase modulus by 8x .

'

r

for DDH applications , we usually set p
-
- 2g -11 where group operations all

← leg. , 16384- bit modulus for 256 bits

q is also a prime Cp is - a
" safe prime

") and work in the scale linearly (or worse) in of security)

subgroup of order q in Ipt ( Ipt has order p
- I =2q) - see HW3 bit length of the modulus

Elliptic curve groups
: only require 256 -bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time 219% (g - algorithm - can discuss atgeenmeds,got ]
↳ Much faster than using Ipt : several standards

- NIST 12256
, 12384

,
12512 ) can discuss more at end of semester

-

Dan Bernstein's curves : curve 25519 (or in advanced crypto class)
↳ widely used for key - exchange t signatures on the web

When describing cryptographic constructions
,
we will work with an abstract group (easier

to work with, less details to worry about)


