
Trivial proof of knowledge : prover sends witness in the denar to the verifier
↳ In most applications, we additionally require zero - knowledge

Note : knowledge is a strictly stronger property than soundness
↳ if protocol has knowledge error E ⇒ it also has soundness error E (ie

. a dishonest prover convinces an honest verifier of a
false statement with probability at most E)

assume g, he GProvingknowledgeofdiscreteloglschnorrbprotoc.co#~ where Gi has prime order q

Suppose prover wants to prove it knows x such that high " lie
. prover demonstrates knowledge of discrete log of h base g)

_Pe verifier

÷:
c- CEZp

2- ← rt Cx E-
- lluverifythat g

"
= u . h
'

Completeness : if z -- rt ex , then
get = grtox = grgcx = u . he zero knowledge only required to hold against an honest verifier

(e.g . . view of the honest verifier can be simulated)

Honest-VerifierZ-ero-knowkdgy.baild a simulator as follows (familiar strategy : run the protocol in
"

reverse
") :

on input Lg , h) :
1. sample Z E Ip
2. sample CE Ip [uniformly random challenge
3
.
set a = 54ha and output (u, c, Z)

uniformly randomJ
t chosen so that lgsimualsatedhetraieaftraisjipdentiw.at/h daistribnotned, verifier

group element since GZ = u . he
-

z is uniformly random relation satisfied by a(valid proof)
What goes wrong if the challenge is not sampled uniformly at random lie, if the verifier is dishonest)
Above simulation no longer works (since we cannot sample 2- first)
↳ To get general zero- knowledge, we require that the

verifier first comet to its challenge (using a statistically hiding commitment)

for simplicity, we assumeif P* succeeds with probability 1

Knowledge : Suppose P* is (possibly malicious) prover that convinces honest verifier with probability 1. We construct an extractor as follows:

I. Run the prover P* to obtain an initial message U .

2. Send a challenge C
,
⇐ Ep to P! The prover replies with a response Zi .

3 .
"Rewind

"

the prover P* so its internal state is the same as it was at the end of step 1. Then , send another

challenge Cz ⇐Ip to Pt. Let Zz be the response of Pt.
4. Compute and output X = (Z ,

- za) (c, - cis
'
c- Ep .

Since P't succeeds with probability 1 and the extractor perfectly simulates the honest verifier's behavior
,
with probability 1 , both be, Ci , 2- i)

and Lu , ca, Zz) are both accepting transcripts . This means that

g
Z '
= u . h

" and g
⇐

= a. h
"

⇒ q?=µ2÷ ⇒ g
Zi tax

= g
Zz tax

←
with overwhelming probability,

⇒ X = (z ,
- z) (c , - Cz)

- I
C- Ip 9th

Thus
,
extractor succeeds with overwhelming probability.

(Boneh- Shoup , lemma 19.2)
If P" succeeds with probability E

,
then need to rely on

"

Rewinding Lemma" to argue that extractor obtains two accepting
transcripts with probability at least EZ - Yp.

How can a prover both proveknowtedge and yet be zero- knowledge at the same time?

↳ Extractor operates by
"

rewinding
"

the prover lit the prover has good success probability , it can answer most challenges correctly.
↳ But in the real (actual) protocol , verifier Canet rewind (i.e . . verifier only sees prover on fresh protocol executions) , which can

provide zero- knowledge.

I#fiatipntd¥g :

f-
client's

..
..

✓ Public verification key
client (x) secret (credential) server (g, h=g×) Essentially, the discrete log of h (base g) is
-

=
the client's " password

"

and instead of sending
- the password in the clear to the server

,
the client

protocol is precisely 3- round
proves in zero-knowledge that it knows X

Schnorr proof of knowledge of discrete log

Correctness of this protocol follows from completeness of Schnorr 's protocol
(Active) security follows from knowledge property and zero- knowledge
↳ Intuitively : knowledge says that any client that successfully authenticates must know secret X

zero -knowledge says that interactions with honest client i.e
,
the prover) do not reveal anything about X

(for active security, require protocol that provides general
(
zero- knowledge rather than just HV2K)

More general view : E- protocols (Sigma protocols)

prover (x,
g. h

-

y
'

r
Verifier

& "
commitment "

verifier has no
- (secret raidoneness (Arthur - Merlin proofs)

V← "

challenge " (random string ,
"

public- coin
")
-

rt EX Properties : I . Completeness- "

response
" -

protocol flow resembles a E 2. Honest- Verifier Zero - knowledge

Protocols with this structure (commitment - challenge - response) are called £proIoob (Sigma protocols) 3.proofofknowkdge.LI

Many variants of Schnorr protocols : can be used to prove knowledge of statements like :

- Common discrete log : X such that he =g? and hz=gF (useful for building a verifiable random function)
- DDH tuple : Ig , u, v. w) is a DDH tuple

- namely, that a- ga , v=gP, and w=gdP for a,p C- Is

↳ Useful for proving relations on El Gamal ciphertext leg. , that a particular ElGamal ciphertext encrypts either 0 or 1)

Basicelectronic :

P,
Inc Cpk , x ,) w/

only knows Pk
[

knows sk

P2 voteaggregaor voting
: authority
'

Enc Cpk, xn)
Pn# t

✓
candidate O wins it

decrypt to learn Ex: sum < I

Assume two candidates (0/1) L candidate 1 wins if
Sam > I

2

Reff : Public- key encryption scheme needs to be
"

additively homeomorphic
"

True for "

exponential El Gamal
"

Setup : Let 6 be group of order p
and generator g

xE Zp pk : (g , h=g×)

c- Ip
sk : x

Encrypt) : r E2pct: Cgr, hr . gx) p
this is solving discrete log in 6

possible as long as m
' is smell - try

Decrypted!
"
"

compute 2- = Fx and output m
' e q. such that gm

'

= z

f
every value of m

' in the interval
]

Given two ciphertexts Cto = Cgr, hr . g%)
Ct

,
= Cg! h÷gx.)

→ compute (groth , hrotrigxotx,)
↳

encryption of the Sam Xo t X , C- Ip

(eanzbeaunsedd to sum encrypted votes ; resulting value between]
Basic voting protocol still n¥ secure! Voter can be malicious and encrypt a non- 0/1 value (e.g. .

- 100 or 100) !
- Voters must prove that

their vote is valid (i -e
, encryption of 0/1), but without revealing the vote

- Language of valid ciphertext (defined with respect to g.h)
L = { luv) E G : Ir E Ip: :(u -- gr , v=hr or u = yr, v -- hrg)) (chaum -Pedersen]

Implies proof of knowledge of DDH

tuples : if Cg , u , v , w) is DDH

tuple, then r=gr , w = ur for

some r E Ip , so proving knowledge
of common discrete log suffices

