
tem . If a cipher satisfies perfect secrecy , then 114/3 / Ml .

Intuition: Every ciphertext can decrypt to at most 1kt s IMI messages . This means that ciphertext leaks information about
the message (not all messages equally likely) . Cannot be perfectly secret.

Pref. We will use a " counting
"

argument. Suppose IKI s IMI . Take any ciphertext c ← Encrypt (k , m) for some KEK, m EM.

This ciphertext can only decrypt to at most 1kt possible messages (one for each choice of key) . Since IKI s IMI
,
there

is some message m
'
EM such that

Vk E K : Decrypt (k , c) F m
'

By correctness of the cipher,
tfKEK : Encrypt ( k , m ' ) E C

This means that

Pr( k t k : Encrypt (k , m
' ) = c) = 0

Pr (k t k : Encrypt (k , m) = c] > o } Cannot be perfectly secret !

Takeaway : Perfect secrecy requires long keys . Very impractical (except in the most critical scenarios - exchanging daily cookbooks)

If we want something efficient / usable , we need to compromise somewhere.

-

Observe : Perfect secrecy is an information-theoreiyl.ie, a mathematical) property
Even an nfiniyp¥atayub¥ adversary cannot break security

We will relax this property and only require

security against computationaHy-bounded (efficient) adversaries



Idea:
"

compress
"

the one- time pad : we will generate a long random-looking string from a shirt seed (e.g. , S E {0,13128 ) .

I typically : se { 0,13
" (X is the seed length or securityparameter)

-
-

-
-

-
-
-
e

-
- -

-

# G (s) t {0,13
"

where n → x
←
n is the "stretch

" of a PRG

Stamper : K
-

- {0,131
M = C = {0,13

"

Encrypt (k , m) : c← m ①/G Instead of xor-ing with the key, we use the key to derive a "

stream" of random-

Decrypt (k, c) : m ← c Ot G(K) looking bits and use that in place of the one- time pad

If X s n
,
then this scheme cannot be perfectly secure ! So we need a di¥ notion of security

Intuitively : want a stream cipher to function
"

like
"

a one- time pad to any
" reasonable

"

adversary .
⇒ Equivalently : output of a PRG should " look" like uniformly - random string

what is a
"

reasonable
"

adversary?
- Theoretical answer : algorithm runs in (probabilistic) polynomial time
- Practical answer : runs in time < 280 and

space
C 264 (can use larger numbers as well)

Goat : construct a PRG so no efficient adversary can distinguish output from random .

Captured by defining two experiments or games :

M s I do.B" 1-1⇐ + Ego, ,gn
the input to the adversary Lt) is

adversary ← t ← Gcs) adversary often called the challenge
-

-

↳ be so , is
- Z> BE {o ,B

Experiment 0 Experiment 1

Adversary 's goal is to distinguish between Experiment 0 (pseudorandom string) and Experiment 1 (truly random string)
↳ It is given as input a string t of length n (either t ← Gcs) or t £10,13") / Remember : adversary knows the algorithm G;

↳ It outputs a guess (a single bit b E {0.13) i-onyseed.is hidden ! .

Let Wo : = Pr [ adversary outputs 1 in Experiment 0] } define the distinguishing advantage of A as Do Not RELY ON

WI := Pr (adversary outputs I in Experiment I ] PRGAdv [A, G] : = / Wo - W , I ISECURITYBYOBSCURITY.ly
f- probabilistic polynomial time

Definition . A PRG G :{0,131 → {0.13
"

is secure if for all efficient adversaries A, smaller than any
inverse polynomial

PRGAdv CA, G) =neglC
↳ negligible function (in the input length) / e'S" II , 2109

"

v

- Theoretical definition : f- (x) is negligible if f E off
' ) for all a- IN

- Practical definition : quantity S 2-80 or E 2-
'28



Understanding the definition:
1. Can we ask for security against all adversaries (when n ⇒ X) ?

No ! Consider inefficient adversary that outputs 1 if t is the image of G and 0 otherwise .

- Wo = I } PRGADVEA, G) = I -¥ I 1 if nut- W
,
= Pr[ter {oil )" : Is C- fo,B1 : GG) -- t ) = ¥

2. Can the output of a PRG be biased leg, first bit of PRG output is I w .p. Z)
?

No ! Consider efficient adversary that outputs 1 if first bit of challenge is 1
.

- Wo = I } PRGAdv EA ,G) = IT Not NEGLIGIBLE !
- W,

= I -

More generally , no efficient statistical test can distinguish output of a secure PRG from random.

3
. Can the output of a PRG be predictable (e.g. , given first 10 bits

, predict the Nth bit) ?

No ! If the bits are predictable w -p.
It E

,
can distinguish with advantage E (since random string is unpredictable)

Infect : unpredictable ⇒ pseudorandom

take-away : A secure PRG has the same statistical properties as the one- time pad to any efficient adversary.
⇒ Should be able to use it in place of one-time pad to obtain a secure encryption scheme (against efficient

adversaries)

Need to define security of an encryption scheme.

Goal is to capture property that no efficient adversary can learn any information about the message given only the

ciphertext. Suffices to argue that no efficient adversary can distinguish encryption of message mo from me , even if

mo
,
m

, are aiayhar .

Let (Encrypt, Decrypt) be a cipher. We define two experiments (parameterized by b E {0,13) :
b. C- {0,13

t
adversary challenged lgsemanteigper.s.gg#KEK

Cb ← Encrypt(k,Mb)
c-

I
b
'
C- {0,13

Adversary chooses two messages and receives encryption of one of them.. Needs to guess which one lie, distinguish
encryption of mo fwm encryption of mi)

Let Wo : = Pr [b' = 1 / b -- O] } probability that adversary guesses I

W
,
i = Pr (b' = 1 / b =L] (if adversary is good distinguishes, these two should be very different)

Define semantic security advantage of adversary A for cipher Tse ' (Encrypt , Decrypt)
SSAdv (A

,
Tse) = / Wo - W, I

Definition. A cipher TISE ' (Encrypt, Decrypt) is semantically secure if for all efficient adversaries A
,

SSAdv CA
, Tse] = negl (x)

←
X is a security parameter (here , models the bittength of the key)



Understanding the definition :
can we learn the least significant bit of a message given only the ciphertext (assuming a semantically - secure cipher)

No ! Suppose we could . Then
, adversary can choose two messages mo

,
m
,
that differ in their least significant bit

and distinguish with probability 1.
This generalizes to any efficiently - computable property of the two messages.

How does semantic security relate to perfect secrecy ?

theorem. If a cipher satisfies perfect secrecy, then it is semantically secure.
Proof. Perfect secrecy means that tf mo , m, EM ,

CE C :

Pr Ek Ek : Encrypt (k, mo) -- c) = Pr Ek Ek : Encrypt (k , mi)
-

- C]

Equivalently , the distributions
{KEK : Encrypt Ck, mo)) and { k E K : Encrypt (k, m,) }
- -

Do D,

are ice (Do =-D,) . This means that the adversary 's output b
'
is identically distributed in the two experiments, and so

SSAdo [A, Tse] = two - W, I = O
.

f- encryption key (PRG seed)
Corollary . The one- time pad is semantically secure. ✓

seems straightforward,

f- {I 84:} If I ~
but takes some care to prove

L

theorem .

Let G be a secure PRG . Then , the resulting stream cipher constructed from G is semantically secure .

Pref. Consider the semantic security experiments :

Experiment O : Adversary chooses mo , m , and receives co = G(s) to mo want to show that adversary's
output in these two experiments are

Experiment 1 : Adversary chooses mo
,
m
, and receives Cc = G (s) Ot m ,

}
indistinguishable

Let Wo = Pr ( A outputs 1 in Experiment 0]

W
,
= PRCA outputs 1 in Experiment I]

idea: If Gls) is uniform random string ( i.e.
,
one- time pad) , then Wo = Wi

.
But Gls) is like a one- time pad!

Define Experiment O
'
: Adversary chooses mo , m , and receives co = it to mo where E t fo. D

"

Experiment I
'
: Adversary chooses mo

,
m
,
and receives c ,

= t to m, where t E lo , 13
"

Define Wi
,
W

,

'

accordingly.

First
, observe that Wo

'
= W

,

' (one- time pad is perfectly secure)
.

Now we show that two - Wo't = negl and 1W ,
-wit a negl .

⇒ two - W, I = two -Wo' two' -witwi -Wil
E two- Wo' It two' -wilt l wi-Wil by triangle inequality
= negl. tnegl. = negl.



Typical proof strategy in cryptography :p@fbeycontraposc_tie.Sh_ow.If
G is a secure PRG , then for all efficient A ,

two- Woll = negl .
Common proof technique: poore the contrapositive .

Contrapositive : If A can distinguish Experiments 0 and O
'

,
then G is not a secure PRG.

Suppose there exists efficient A that distinguishes Experiment 0 from O
'

⇒ We use A to construct efficient adversary B that breaks security of G
.

↳ this step is a reduction
(we show how adversary lie, algorithm) for distinguishing Exp. O and O' ⇒ adversary for PRG]

Algorithm B (PRG adversary) : be Eois

PRG challenger )-1 -
if b-- O : St Eo,B

"

nie's:c:*: :..
'↳ fits. I :c::

tot m T
where t = Gcs) or b'EEOIt£90,1)" V

b' C- 90,13

Running time of B = running time of A
= efficient

compute PRGAdv EB, G) .

PNB outputs 1 if b -- o) = Wo ← if b -- O
,
then A gets Gls) Ot m which is precisely the behavior in Exp. O

PrEB outputs 1 if b. = I] = wi ← if b -- I, then A gets t Ot m which is precisely the behavior in Exp. O
'

⇒ PRGAdv EB ,G) = two- Wo't
,
which is non -negligible by assumption . This proves the contrapositive.

Important: Security of above schemes shown assuming message space is {0,13
"

(i.e.
,
all messages are n - bits long)

Infraction: We have variable-length messages. In this case
, security guarantees indistinguishability from other messages

of the same length, but length itself is leaked ( inevitable if we want short ciphertext)
↳ can be problematic - see traffic analysis attacks!

So far
,
we have shown that if we have a PRG

,
then we can encrypt messages efficiently (stream cipher)


