Yao's Protocol (2PC):

key ingredient: "garbling" protocol (garbled circuits) truth table: $\begin{array}{c|c} x_1 & & & & \\ \hline x_2 & & \\ \hline x_2 & & \\ \hline \end{array} \begin{array}{c} x_3 = x_1 \wedge x_2 \\ \hline \end{array} \begin{array}{c} x_1 & x_2 \\ \hline \end{array} \end{array}$ 1) Associate a pair of keys $(k_i^{(a)}, k_i^{(b)})$ with each where i in the circuit $\begin{array}{c|c} k_{1}^{(0)} & \underline{X_{1}} \\ k_{1}^{(0)} & \underline{X_{2}} \\ \underline{X_{2}} \\ \underline{X_{2}} \\ k_{3}^{(0)} \\ \underline{X_{2}} \\ \underline{X_{2}} \\ \underline{X_{2}} \\ \underline{X_{2}} \\ \underline{X_{3}} \\ \underline{X$ for wire i [symmetric encryption key] 2) Prepare garbled truth table for the gate L> Replace each entry of truth table with corresponding key L> Encrypt output key with each of the input keys $ct_{00} \leftarrow Encrypt(k_1^{(0)}, Encrypt(k_2^{(0)}, k_3^{(0)}))$ $Ct_{ol} \leftarrow Encrypt(k_{1}^{(o)}, Encrypt(k_{2}^{(s)}, k_{3}^{(o)}))$ randomly shuffle ciphentexts $ct_{10} \leftarrow Encrypt(k_1^{(c)}, Encrypt(k_2^{(o)}, k_3^{(o)}))$ $ct_{II} \leftarrow Encrypt(k_{i}^{(i)}, Encrypt(k_{2}^{(i)}, k_{3}^{(0)}))$ 3) Construct decoding table for output values $k_3^{(c0)} \mapsto 0$] Alternatively, can just encrypt output values instead of k2 > 1) keys for output wires General garbling transformation: construct garbled table for each gate in the circuit, prepare decoding table for each output wire in the circuit I try decripting each ciphertext with the input keys, and take the output key to be the ciphertext that decripts Evoluating a gartled incit: k. (6) ct11 ct00 (0) ctor etio ct⁽⁰⁾ ct⁽⁰⁾ k₆ ct⁽¹⁾ ct⁽⁰⁾ k₆ ct⁽¹⁾ ct⁽⁰⁾ decode using decoding table ct_01 ct(2) ct ... ct (2)

Invariant: given keys for input wires of a gate, can derive key corresponding to output wire => enables gate-by-gate evaluation of garbled cirvit L> <u>Requirement</u>: Evaluator needs to obtain keys (labels) for its inputs (but without revealing which set of labels it requested)

Yao's gort

led circuit protocol:	
Circuit C	
Alice (garbler)	Bob (exducator)
X private input X	L> private input y
1. Prepare garded circuit	1. Prepare OT quaries for
for C	bits of y
OT for labels for y	<u>8</u>
2. Prepare OT responses	
for Bob's inputs. Messages	
correspond to wire labels.	
OT responses for	
labels of Bob's inpu	4
garbled circuit	
labels for Alice's imput	τ χ
	2. Evaluate another circuit

to learn C(x,y)

Correctness: Follows by correctness of OT and of the garbling construction

relies on OT simulator to simulate OT responses Security: Relies on security of OT and garbling transformation 1-> Simulate Bob's view given output of computation (aving the garbled circuit simulator) → Simulate Alice's view using OT Simulator

Variants: 1. If both parties should learn output, Bob can send it to Alice.

- 2. If Alice and Bob should karn distinct outputs, Alice can have the functionality output a blinded (encrypted version of her output.
- 3. Can extend to malicious security (need additional rounds and some modifications).

Many optimizations possible;

- 1. free XOR no need to send garbled tables for XOR gates in circuit
- 2. half gates - only need two ciphentexts for each AND gate (not 4)
- 3. no need to double encrypt can "encrypt" once using key derived from input keys