Computing on secret-shared data: Another paradigm for 2PC (and MPC) - better-suited for evaluating arithmetic circuits
 Alice's shave
Alice: Chooses $r_{A B}, r_{A C} \stackrel{R}{R}_{\mathbb{Z}_{P}}$ and sends $r_{A B}$ to Bob, $r_{A C}$ to Chari ie
\mapsto Observation: $\left(x_{A}-r_{A B}-r_{A C}, r_{A B}, r_{A C}\right)$ is additive secret sharing of Alice's input $x_{A} \uparrow$ Bob's share
We will write $\left[X_{A}\right]$ to denote additive secret sharing of X_{A}
Charlie (X_{c})

Computing on shares: Given shares of x_{A} and x_{B},

$$
\left[x_{A}+x_{B}\right]=\left[X_{A}\right]+\left[x_{B}\right] \quad \text { (component-wise addition) }
$$

Specifically if $\left[x_{A}\right]=\left(x_{A, 1}, x_{A, 2}, x_{A, 3}\right)$ where $x_{A, 1}+x_{A, 2}+x_{A, 3}=x_{A} \in \mathbb{Z}_{P}$

$$
\left[x_{B}\right]=\left(x_{B, 1}, x_{B, 2}, x_{B, 3}\right) \text { where } x_{B, 1}+x_{B, 2}+x_{B, 3}=x_{B} \in \mathbb{Z}_{p}
$$

then $\left[x_{A}+x_{B}\right]=\left(x_{A, 1}+x_{B, 1}, x_{A, 2}+x_{B, 2}, x_{A, 3}+x_{B, 3}\right)$ and $\left(x_{A, 1}+x_{B, 1}\right)+\left(x_{A, 2}+x_{B, 2}\right)+\left(x_{A, 3}+x_{B, 3}\right)=x_{A}+x_{B} \in \mathbb{Z} p$
More generally: 1. Share addition: $\left[x_{A}+x_{B}\right]=\left[x_{A}\right]+\left[x_{B}\right]$
2 Scalar multiplication: $\left[k x_{A}\right]=k \cdot\left[x_{A}\right]$
3. Addition by constant: $\left[X_{A}+k\right]=\left(X_{A, 1}+k, X_{A, 2}, X_{A, 3}\right)$

Multiplication of secret-shared values is more challenging. We will first assume that parties have a "hint" - a secret sharing of a random multiplication tuple (idea due to Beaver - "Beaver multiplication triple"): each party only has a share of a, b, c : no one knows actual values!
Suppose parties have a secret-sharing of a random product: $[a],[b],[c]$ where $c=a b \in \mathbb{Z} p$
$\sim \gamma$

$$
a, b \nleftarrow \mathbb{F}_{p}(a, b \text { are uniformly random values) }
$$

Then, given $[x]$ and $[y]$, we proceed as follows:

1. Each party computes $[x-a]$ and publishes their shave of $x-a$
2. Each party computes $[y-b]$ and publishes their share of $y-b$
3. All of the parties compute non-interactively:

$$
[z]=[c]+[x](y-b)+[y](x-a)-(x-a)(y-b)
$$

Claim: $z=x y$. Follows by following calculation:

$$
\begin{aligned}
z & =c+x(y-b)+y(x-a)-(x-a)(y-b) \\
& =a b+x y-b x+x y-a y-x y+b x+a y-a b \\
& =x y
\end{aligned}
$$

Observe: Parties only see $x-a$ and $y-b$ in this protoos). Since a, b are uniformly random and uncrown to the parties, $x-a$ and $y-b$ is a one-time pad encryption of x and y. Resulting protocol provides information - theoretic privacy for parties' inputs.

Assuming we have access to Beaver multiplication triples, we can evaluate any arithmetic circuit as follows (among n-parties):

1. Every party secret shares their input with every other party
2. For each addition gate in the ivenit, parties locally compute on their shares
3. For each multiplication gate in the circuit, parties run Bearer's multiplication protocol (using different triple each time!)
4. Every party publishes share of the output; parties run share reduction to obtain output.

Where do Beaver triples come from?

- Generated by a trusted dealer (say, implemented using secure hardware like Intel SGX)
\rightarrow Notice that these are random multiplication triples and input-independent (the dealer does not see any party's secret inputs)
- Using oblivious transfers. Suppose p is small (i.e., polynomial). We can use a 1 -out-of- p^{2} OT to generate a multiplication triple.
sender

$$
[a]_{1},[b]_{1},[c], \mathbb{R} \mathbb{Z}_{p}
$$

for $i, j \in \mathbb{F}_{p}$, let

$$
m_{i, j}=\left([a]_{1}+i\right)\left([b]_{1}+j\right)-[c]_{1} \in \mathbb{F}_{p}
$$

$\xrightarrow{O T \text { for message }\left([a]_{2},[b]_{2}\right)}$

By construction, receiver's message is $\left([a]_{1}+[a]_{2}\right)\left(\left[b_{1}\right]+\left[b_{2}\right]\right)-\left[c_{1}\right] \in \mathbb{Z}_{p}$ and so $[a],[b],[c]$ is precisely a Beaver multiplication triple. Nest, 1-out-of $-p^{2}$ OT can be implemented using $O(\log p)$ 1-out-of-2 $O T_{s}$ (via a tree-based construction), but commanication grows with $O\left(p^{2}\right)$.
\longrightarrow Another method is to use Yo's garbled circuits to generate Beaver triple. Input is $[a]_{1},[b]_{1},[c]$, and $[a]_{2},[b]_{2}$, and output is $[c]_{2}$. Communication now gnaws with polyloy (p), so this method works even for superpolynomal p.

In all these cases, Beaver triples cam be generated in a separate "preprocessing" phase (before the parties cone online and the inputs to the computation are know). MPC with preprocessing model.

MPC protocol comparison:

* Can be improved further!

Wrap-up: This course: secret-key cryptography
\rightarrow parties have a shared secret bey $\square^{\text {AES-GCM }}$
\mapsto gold standard: authenticated encryption (confidentiality + integrity)
public-key cryptography
\rightarrow mechanisms to negotiate a shared key $\square^{\text {TLS } 1.3}$
\rightarrow main primitives: authenticated ky exchange, digital signatures
multiparty computation: protecting computations
\rightarrow oblivious transfer \Rightarrow general MPC
\rightarrow Anything that can be computed with a trusted party can be computed without!"
What's next? Encryption schemes with more flexibility:

- Homomorphic encryption: computations on cipdertexts

$$
\left[E_{n c}(p k, x) \rightarrow E_{n c}(p k, f(x))\right.
$$

- Identity-based encryption: public keys can be arbitary strings (eeg., a email address)
- Functional encryption: decryption outputs arbitrary function of the message

$$
\left[\operatorname{Dec}\left(s k_{f}, E_{n c}(p k, x)\right) \rightarrow f(x)\right]
$$

New cryptographic assumptions:

- Pairing-based cryptography: exploiting additional structure on elliptic curses to enable "multiplication in the exponent" - $20^{0^{\text {h }}}$ century mathematics!
- Lattice-based cryptography: cryptography with poot-quantum security

Advanced cryptographic protocols:

- Private information retrieval (PIR): reading elements from a database without revealing query
-Differential privacy: protecting sensitive inputs to computations
- Succinct proofs: mimizing the size of a proof

