
C-omputingonsecret-share-ddatoi.hnother paradigm for LPC (and MPC) - better-suited for evaluating arithmetic circuits

RABE Zp [
Alice's share

(
Charlie's share

Alice (XA) Bob (x ,)
Alice: Chooses RAB, RAC

£ Ip and sends RAB to Bob , ryAg
to Charlie

RBA ee Ep
↳ Observation : (XA - RAB -- rAc , RAB, RAC , is additive

④rae RB#,

secret sharing of Alice's input XA
[

Bob's share
RBC v we will write Exa] to denote additive secret sharing of XAf-(XA

,
Xp
,

Kc) -- KatXpHc Charlie (Xo)

Computing : Given shares of XA and XB
,

[Xa t XB] = (XA) t (XB] (component- wise addition)

Specifically if (XA) = (XA
. c , Kaz , XA,3) where XA.it/A,ztXAis=XA E Zp

(KB) = (XB
,
i , XB,e , XB,3) where XB.it/B.2tXB.s=XBE7Lp

then (XA t XB) = (XA, it XB, I , XA.at/B.z,XA.3tXB.3) and Kait XB, i) t (XA, t XB,z) t (XA, + XBis) = XATXBE Ip
Mally : I. Share addition : Kat XB] = Exa) t EXB]

2
.
Scalar multiplication : (k XA) '

- K - HA]
3
. Addition by constant : kxn.tk] = (Xa, t k , XA,z , XA,3)

Multiplication of secret- shared values is more challenging . We will first assume that parties have a
" hint " - a secret sharing of a

tandoori multiplication tuple (idea due to Beaver -
"

Beaver multiplication triples
") :

[
each party only has a share of
a, b , c : no one knows actual values !

Suppose parties have a secret- sharing of a random product : Ca]
,
Eb] , Ec] where c -- ab C- Ip

T J

A, b
I Ttp (a,b are uniformly random values)

Then
, given Ex] and Ey] , we proceed as follows :

I. Each party computes Ex- a] and publishes their share of X-a

2. Each party computes ly- b) and publishes their share of y- b
3 . All of the parties compute non- interactively :

Et) = [of t Ex] (y
-b) t Ey) (x- a) - (x -a) ly-b)

Claim : Z =

Xy . Follows by following calculation :

2- = Ct x Cy -b) t y (x -a)
- K-ally-b)

= aft xy-bftxJ-ay - x/ytb/xtayfab
= xy

Observe : Parties only see X- a and
y-b in this protocol . Since a, b are uniformly random and unknown to the parties, X

- a and y
-b

is a one-time pad encryption of x and y . Resulting protocol provides information - theoretic privacy for parties
'

inputs.

Assuming we have access to Beaver multiplication triples , we can evaluate any arithmetic circuit as follows (among n
- parties) :

I. Every party secret shares their input with every other party
2
. For each addition gate in the circuit

, parties locally compute on their shares
3 . For each multiplication gate in the circuit

, parties run Beaver's multiplication protocol (using diff triple each time !)
4. Every party publishes share of the output; parties run share reduction to obtain output.

Where do Beaver triples come from?
- Generated by a trusted dealer (say , implemented using secure hardware like Intel SGX)
↳ Notice that these are randomly multiplication triples and input-independent_ (the dealer does not see any party 's

secret inputs)
-

Using oblivious transfers
. Suppose p is small (i.e, polynomial) . We can use a 1-out- of- p

' OT to generate a multiplication

triple.

sends receiver

[a]
, ,Cb2 , KI . E Ip Carla

, Cbh F- Ip
for i.j E Ftp , let

Mig.
-

- da] , ti) (Cb] , tj) - KI , C- Fp
c-

OT for message (Cah, Cbh)
-

By construction
,
receiver's message is (Ca], t Cah) (EbDt Ebrd) - Cc ,] C- Ip and so Ca]

,
Cb]

,
Ed is precisely a Beaver

multiplication triple. Next
,
tout - of -p2 OT can be implemented using 0(log p) t-out- of -2 OTS (via a tree-based construction)

,

but communication grows with 0402) .
↳ Another method is to use Yao's garbled circuits to generate Beaver triple. Input is Ea]

, ,
Eb]

, ,
Ed

, and

(a)z , [b)z , and output is 632 . Communication now grows with polylog Cp) , so this method works even for superpolynomial p .

In all these cases, Beaver triples canbeg
"

preprocessing
"

phase (before the parties come online and the

inputs to the computation are know) .

IMPCwithpreprocessingm.de#-MPCpNtocolcompyison
: #i¥/Yao * Can be improved further!

Type of computation Arithmetic circuits (Fp) Boolean circuits

Number of parties Arbitrary (n) 2

::÷÷::*" i:÷¥:÷:÷÷÷¥÷÷::Security Information- theoretic Compute
(with Beaver triples)

'oral

wrath : " '

;÷÷÷:÷÷:÷÷¥÷÷: :÷.io?i:i:imi....inteoienf*::i:ni...i.public- key cryptography as 1.3

µ
ECDSA -

↳ mechanisms to negotiate a shared key ~ Schnorr

↳
main primitives : authenticated key exchange , digital signatures

multiparty computation : protecting computations
↳ oblivious transfer ⇒ general MPC
↳

"

Anything that can be computed with a trusted party can be computed without !
"

What's ? Encryption schemes with more flexibility :
-

Homeomorphic encryption : computations on ciphertext
(Enccpk, x) → Enc Cpk, ftx))

-

Identity- based encryption : public keys can be arbitrary strings (e.g. , a email address)
- Functional encryption : decryption outputs arbitrary function of the message

(Dec (sky , Enclpk, xD → f- (XI]
New cryptographic assumptions :
-

Pairing-based cryptography : exploiting additional structure on elliptic curves to enable "

multiplication in the

exponent
"
- 20't century mathematics !

- Lattice- based cryptography : cryptography with postpartum Security
Advanced cryptographic protocols :
- Private information retrieval (PIR) : reading elements from a database without revealing query
- Differential privacy

: protecting sensitive inputs to computations
-

Succinct proofs : mimizing the size of a proof

