
BEET : security against chosen- plaintext attacks lccpa.se#yT [Fasts.TL:4/obdsoerTeYittEaY
- choose the messages to be

↳ semantic security should hold even if adversary sees multiple encrypted messages of itschoosing_ encrypted !
↳

captures many settings where adversary might know the message that is encrypted (e.g., predictable headers or

site content in web traffic) or be able to influence it (e -g. , client replies to an email sent by adversary)
↳ goal is to capture as broad of a range of attacks as possible

Definition: An encryption scheme TISE
= (Encrypt, Decrypt) is secure against chosen- plaintext attacks (CPA -secure) it for all efficient

adversaries A :

CPAAdvIA, Tse] =/ Pr (Wo =D -Prfw , =D / -

-

neg!

where Wb (b E fois) is the output of the following experiment :
b. C- {on]

no , men
diiieisit

-→

Encrypt§ ← same idea as in original semantic security game, but allow adversary
to make encryption queries (also called a

" left- or - right
" oracle)

-1 -
t

b't do, I}
Adversary 's goal is to guess which of mo

or m , was encrypted, given access

output of experiment Wb (to an encryption lie, adversary gets to see encryptions of messages)
of its choice

.

Claim
.
A stream cipher is nod CPA - secure .

Pref. Consider the following adversary :
be so, i3

t

adversely challenge
choose mo , m , EN SE {0113

"
Pr [b' = 1 / b = O] = 0 since c

'
= mo Ot G (s) = c

where Mo F Ml Pr Eb' = 1 / b = I] = 1 since c
'
'

- m
,
Ot Gls) t C

Mo , Mo- ⇒ CPA Adv (A , TlsE) = I
E- Mo Ot G (s)
c-

Mo
,
MI
-
E-Mb to Gls)
c-

output 0 if c-- c
'

output 1 if Cfc
'

Observe : Above attack works for
any deterministic encryption scheme

.

⇒ CPA - secure encryption must be randomized !!
⇒ To be reusable

,
cannot be deterministic. Encrypting the same message twice should not reveal that identical

messages were encrypted .

To build a CPA - secure encryption scheme
, we will use a

" block cipher
"

-

Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits
-

Examples include 3DES (key size 168 bits, block size 64 bits)

AES (key size 128 bits
,
block size 128 bits) block ciphers
--

Will define block ciphers abstractly first : pseudorandom functions (PRES) and pseudorandom permutations (PRPs)
↳Geng: PRES behave like random functions

PRB behave like random permutations

Definition . A function F : K " X → Y with key- space K , domain X , and range Y is a pseudorandom function (PRF) if for all

efficient adversaries A, I Wo - W , I = negl . , where Wb is the probability the adversary outputs 1 in the following
experiment : b C- {0,13

Ee EET
k t k; ft)← FCK . .) if b -- O

f E Fans CX, Y) if b -- 1I "

i:*::: :÷::÷::*:*:. 'a.m.
Y -size 19/1×1) - this is usually exponentially large !
v

b' C- foil }

PRF Adv [A
,
F] = / Wo - W , I = IKEA outputs 1 / b -- o] - PRCA outputs I l b

-

- 1) /

Intuiting : input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally - bounded
adversary) 64)

3.DES : {0,13168×6,1364 → {on364 IKI = 2168 / Fans Ex , y)) = (264/2
AES : { 0,13128 × {0,1/28 → {0,13128 IN = 2128 y fun, q, gg , = (2,2g ,

(2128) } space of random functions is

exponentially - larger than key-space!

Definition : A function F : K x X → X is a pseudorandom permutation (PRP) if
- for all keys K ,

FCK
,
.) is a permutation and moreover

,
there exists an efficient algorithm to compute

F- ' (k
,
7 :

Hk E K : thx EX : F
- ' (k

,
FCK

,
x)) = X

- for k E K
,
the input - output behavior of FCK

,
o) is computationally indistinguishable from ft) where

f £ Perm EX] and PermCX) is the set of all permutations on X (analogous to PRF security)

Note: a block cipher is another term for PRP (just like stream ciphers are PRGS)

Observe that a block cipher can be used to construct a PRG :

F : {0,13×40,15 → {0,13
"

be a block cipher

Define G : {0,15 → {0,13L" as

G (K) = FCK , 1) H FCK , 2) H - - - H FCK , l) ← this stream cipher allows random access !

T T

string concatenation write input as an n-bit string
we said PRP above (just require that n > log l)
(will revisit this) Tv

Theorem. If F is a secure PRF
,
then G is a secure PRG .

PIE . As usual
, we show the contrapositive: if G is not a secure PRG, then F is not a secure PRF.

Suppose we have efficient adversary A for G
.
We use A to build adversary for F :

b C- for}

Algorithm for breaking F
> Expects to see
-

¥¥F
!

I
. If l -- poly , then B is efficient

b-- o : KEK ; t ←GCK) b = o : KEK ; f- ← FCK, ')
2
.
If b '- O : B sends G (k) to A

b --1 : t ← {o, 1)
en b = 1 : f ee fans (Eon)? Eoin](

"'Aµ ," . . .me,
!:L
.
! a uniformly

/ c- Is If b = 1 : B sends uniformly random
#i string (f israndom function)feeo.is/H#-

to A
V

b' C- 10,13 3
. PRFAdvCB.FI =/Pr [b' = I / b -- o] -

Rfb' -- l l b -- 131
=/ PRCA outputs I I b -- o] -Pr EA outputs 1/6=1)
= PRGAdv EA, G]

which is non -negligible by assumption .

But
. . .
we used a block cipher (PRP) in our construction above. Does the proof still go through?

Not quite . . .
for a random function f- (1) = ft) with probability ¥) but 2-

n

might be very very small .. .

for a random permutation, fcc) = H2) with probability 0 adversary won't notice unless it sees a

" collision
"

ice
.

,
two values X.y where[
fu) -- fly))

PRF-switch.ae . Let F : K " X → X be a secure PRP
.
Then

,
for

any
Q -query adversary A :

IPRPAdvfA.FI -PRFAdvfA.FI/EzQfT1ProotIdea-
. Adversary essentially cannot tell the difference unless it sees a collision

. If there is no collision
,
then it is just

seeing random values. How
many queries before there is a collision ? Birthday paradox : Q~tTXTPrlx.geX : x -- y)

-
-

Tx,

take-away : If 1×1 is large leg. , exponential) , then we can use a PRP as a PRF
.

If we sample Q
random points, there

:*
.

÷ :::
so.is::

"

. ::÷;÷:÷:c :*:÷÷÷:::i: : : :i::/ :÷÷÷;÷::bound :

Prfcollision] S QI21×1
#

