
Ihusfyar : PRPIPRF in " counter mode
"

gives us a stream cipher (one - time encryption scheme)

f- typically , the IV is divided into a

threat? Choose a random_ Starting point (called an initialization vector nonce (value that does not repeat) and
" randomized counter mode

" a counter : IV = noncell counter

divide message into blocks (based on block size of PRF)
random

① /IFI.it#DFTkItDFTkItT
-

-1-11
-

IV#¥/ ciphertext

obscure : ciphertext is longer than the

message (required for CPA security)

theorem: Let F : Kx X → y be a secure PRF and let Tlctr denote the randomized counter mode encryption scheme

from above for l-block messages (M
-
- Xfl)

.
Then

,
for all efficient CPA adversaries A

,
there exists an

efficient PRF adversary B such that

CPAAdv CA
,
Teer] S t 2 - PRFAdvCB.FI

← Q : number of encryption queries
l : number of blocks in message

Intuition : 1
.
If there are no collisions lie, PRF never evaluated on the same block)

,
then it is as if everything is

encrypted under a fresh one
- time pad.

2
.
Collision event : (X

,
X ti

, . . . ,
X th- l

.
) overlaps with (X '

,
X 't l

, - - - , X't l- t) when ×
,
X
' er X

text
←

probability that X
' lies in this interval is E ¥1

There are E Q2 possible pairs (X, X
')
, so by a union bound

,

2L Q2
Pr[collision] E
-

1×1

3
. Remaining factor of 2 in advantage due to intermediate distribution :

Encrypt mo with PRF f) PRFADVEB,F) t

Encrypt mo with fresh one-time pad g o

Encrypt m
, with fresh one- time Pad ed preAdv CB , F] t 2¥

Encrypt m
, with PRF 1×1

Interpretation: If 1×1=2128 leg. . AES) , and messages are 1 MB long (216 blocks) and we want the distinguishing advantage
to be below 2-32

,
then we can use the same key to encrypt

Q EJX = 1¥96 = j2 = 239 (n I trillion messages !)

Nonce.ba#untermo-de : divide IV into two pieces : IV = nonce 11 counter

T
value that

does not repeat
common choices : 64 -bit nonce, 64 - bit counter } only nonce needs to be sent !

96- bit nonce
,
32 - bit counter (slightly smaller ciphertexts)

Only requirement for security is that IV does not repeat :
- Options? Choose randomly (either IV or nonce)
- Options: If sender t recipient have shared state (e.g., packet counter)

,
can just use a counter

,
in

which case , IVI nonce does not have to be sent

(CTR)
x

Counter mode is parallelizable, simple - to - implement , just requires PRF
- preferred mode of using block ciphers

Other block cipher modes of operation :

Cipherblock chaining (CBC) : common mode in the past (e.g. , TLS 1.0 , still widely used today)

he TE IE DE MI TE le
t v t I t t
→④

f-
to --⑦ v

I r t TEH I Fishv
- - -

"

T µIf HII FEE o need 1¥ 1¥
Try v TH# to compute F

" fdny TT 17ciphertext IV - Ci Cz - G m
, m2 - mg

- -

here (need PRP,
- - -

Encryption not just PRF) Decryption

theorem: Let F : KXX → y be a secure PRF and let TlcBc denote the CBC encryption scheme for l - block

messages (m = Xfl)
.
Then

,
for all efficient CPA adversaries A

,
there exists an efficient PRF adversary

B such that 20,212
CPAADVCA

,
TlcBc] E txt 2 - PRFAdvCB.FI

← Q : number of encryption queries
l : number of blocks in message

intuition : similar to analysis of randomized counter mode :

I . Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs
2
.
When encrypting ,

PRP is invoked on l random blocks
,
so after Q queries , we have Ql random blocks

.

⇒ Collision probability E I this is larger than collision prob. for randomized counter mode by a
factor of £ (overlap of Q random intervals vs . QR random points]

3. Factor of L arises for same reason as before

Interpretation . CBC mode provides weaker security compared to counter mode : 2¥ us . 40¥
Concretely : for same parameters as before (/ MB messages, 2-32 distinguishing advantage) :

Q s =/ = JIE = 23" ' (n I billion messages)
↳ 2%5 ~ 180 × smaller than using counter mode

Padding : each ciphertext block is computed by feeding a message block into the PRP

⇒
message must be an even multiple of the block size

⇒ when used in practice, need to pad messages

can we pad with zeroes ? Cannot decrypt ! What if original message ended with a bunch of zeroes ?

Regt : padding must be invertible

CBC padding in TLS to : if K bytes of padding is needed , then append ko bytes to the end, with each byte set to k- I

(for AES- CBC) if O bytes of padding is needed, then append a block of 16 bytes , with each byte equal to 15
↳ dummy block needed to ensure pad is invertible injective functions meet expand :

↳ called PKCS#SIPKCS# 7 (public-key cryptography standards) (/ {0,1352561 > 110,132561 /
Need to pad in CBC encryption can be exploited in " padding oracle

" attacks - see HWI for one example

Padding in CBC can be avoided using idea called "

ciphertext stealing
" (as long as messages are more than I block)

> interesting traffic analysis attack :

each keystroke is sent in separate
packet , so # packets leaks info on lendjh

Comparing CTR mode to CBC mode : of#as
imagine 1 byte messages

CTRmode_- CBCmode_
(e.g., encrypted key strokes

1. no padding needed (shorter ciphertexts) 1. padding needed over SSH)
2 . parallelizeable 2. sequential I block t l byte with CTR

2 blocks with CBC
3
. only requires PRF (no need to invert) 3 . requires PRP

←

y
4. tighter security 4. less tight security requires more structured primitive,
5
.
IVs have to be non-repeating / easy to implement : (re-key more often) more code to implement forward

and backward evaluation
(and spaced far apart) IV -

- noncell counter 5. requires unpredictable IVs
T
only needs to be ← TLS 1.0 used predictable IVs
non- repeating (can be predictable) (see HWI for an attack)

SSH v1 used a O IV

(even worse !)

Bottom : use randomized or nonce -based counter mode whenever possible : simpler , easier , and better than CBC !

A tempting and bad way to use a block cipher : ECB mode (electronic codebook)

TMI Scheme is deterministic ! Cannot be CPA secure !
I
-

I 17in /¥) not even semantical, secure
!

J f t (mo , mo) vs
.
(mo

,
Mi) where mi t mo

I Me 17 t
-

T
ciphertext blocks output

ciphertext blocks
output are same

are different

inception : simply apply block cipher to each block

of the message

Decryption : simply invert each block of the ciphertext

NEVER USE ECB MODE For ENCRYPTION 4

