
Suppose H is a Merkle- Damgaord hash function built from a secure compression function

several ways to build a keyed function :

1 . Prepend key : FCK , m) : = H (k Ilm)
↳ Insecure due to structure of Merkle- Barnyard : can mount an "

extension attack:
"

given H (KH m), can compute
Hlkllmllm') by extending Merkle-Danged chain

2 . Append key : FCK,m) : = Hlm 11k)
↳ Similar to hash- then- MAC construction and vulnerable to same offline attack : adversary finds a collision in the

Merkle- Barnyard prefix and uses that to construct a forgery f
> for SHA-I

, they used PDF files
↳ Structure exploited in SHA-I collision demonstration (can generate arbitrary collisions once prefix matches)

3. Envelope method : FCK, m)
'

- = H (K HMH K) } for reasonable pseudorandomness assumptions on h (e.g, both

4. Two- key nest : F ((ki, kz) , m) : = H (ka HH Ck , H m)) F- (k ,m) : = h (K,m) and Falk ,m) i -- h (m , k) is a PRF), both

of these constructions are secure PRFS on a variable- size domain

✓
hash-based MAC

HMAC is a PRF /MAC based on the two- key nest (though with correlated keys) :
HMACCK

,
m) : = H (K , H H (ka, m))

where k
,

← k ④ ipad and kz← k to opad
and ipad and opad are fixed strings (specified in the HMAC standard)

I
0×36 repeated %x5C repeated

Sety: Since k , and ka are correlated , need to make stronger assumption on security leg., h remains pseudorandom under a related
attack)

Instantiations : Typically , denoted HMAC- H where H is the hash function

HMAC- SHAI%"
HMAC- SHA256 - one of the most widely- used MAC on the web (used in SSLITLS, IPsec, SSH , and more)

HMACy¥ahi : Recall that under reasonable assumptions , HMAC is a secure PRF

In many protocols, we need to derive multiple keys from a single master key leg, derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

Keno ← HMAC (kmaster
,

"
eric

")) PRF security says derived keys are computationally indistinguishable from
kmac ← HMAC (kmaster

,

"
mac

") uniform

T
derived keys master key ttag (just has to be unique)

This approach is used in TLS and IPsec to derive session keys durin session setup
↳ General paradigm is the

"

expand
"

step in hash-based key- derivation (HKDF - RFC 5869)
↳ Consists of two procedures :

-

Extract : derive a master key from entropy
source leg, a user password)

-

Expand: derive sub- keys from the master

key
Both steps rely on HMAC

How do we combine confidentiality and integrity ?
↳ Systems with both guarantees are called outdatedencryption schemes - gold standard for symmetric encryption

touring :

l. Encrypt - then MAC (TLS 1.2T
, IPsec) ←

guaranteed to be secure if we instantiate using CPA -secure encryption
and a secure MAC

2. MAC - then- encrypt (SSL 301%510
,
802. " i) T

as we will see
, not always secure

Definition. An encryption scheme The :(Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:
- CPA security (confidentiality]
- ciphertext integrity (integrity]

-adversary challenger
KEK

mi
-←Entmf§C

-

-

f- [
special symbol L to denote invalid ciphertext

output 1 if c ¢ {Ci , Cz }

and Decrypt (k, c) =L I

Define CI Adv CA, Tse] to be the probability that output of above experiment is 1. The scheme TISE satisfies

ciphertext integrity it for all efficient adversaries A
,

CIAdv CA, THE] = negkx)
←
security parameter determines key length

ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertext it can generate are those that are

already valid
. Why do we want this property ? Encrypted under KA

KA
,
KB KE

Consider the following active attack scenario : mail serverIE
(

x.
...

-

Each user shares a key with a mail server c) To:BoT/KA / Message- To send mail, user encrypts contents and send to mail server Alice -

Encrypted under- Mail server decrypts the email
, re

-encrypts it under recipient's key and delivers email
Eve intercepts and kB

Encrypted under Kp
modifies message

If Eve is able to tamper with the encrypted message,
Eve / KA

,
KB KE

then she is able to learn the encrypted contents (even if [m°e/¥ mail server

the scheme is CPA- secure)
ka k, ke

peed↳ More broadly , an adversary can tamper and inject ciphertext's Alice Bob
under KE

into a system and observe the user's behavior to learn information

about the decrypted values - against active attackers, we need stronger notion of security

Definition . An encryption scheme Tls (Encrypt, Decrypt) is secure against chosen- ciphertext attacks (CCA- secure) if for all efficient

adversaries A
,
CCAAdvCA

,
TSE] = negl. where we define CCAADVCA, TSE] as follows :

b. C- {on}

adversary I

tCi← Encrypt(k, mi")c-±÷:¥"¥
b' Eloi) [adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertext it received from the

CCAADRLA , Tse] = /Pr[b' = l l b -- o] - prfbi.si/b=z]) challenger (otherwise, adversary can trivially break security)

↳ called an " admissibility
"
criterion

CCA- security captures above attack scenario where adversary can tamper with ciphertext
↳ Rules out possibility of transforming encryption of XHZ to encryption of

y Hz
↳ Necessary for security against active adversaries (CPA- security is for security against passive adversaries]
↳ We will see an example of a real CCA attack in HWI

teen.
If an encryption scheme THE provide authenticated encryption, then it is CCA- secure .

ProofLI→ .
Consider an adversary A in the CCA- security game. Since Tse provides ciphertext integrity , the challenger's response
to the adversary's decryption query will be 1 with all but negligible probability. This means we can implement the

decryption oracle with the
"

output L
"

function. But then this is equivalent to the CPA- security game .
[Formalize using a

"

hybrid argument
") simple counter-example : concatenate unused bits to end of ciphertext

f
in a CCA-secure scheme (stripped away during
decryption)

Note: converse of the above is not true since CCA -security ⇒ ciphertext integrity.
↳ However , CCA- security t plaintext integrity ⇒ authenticated encryption

-a¥ay : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

Encrypt-Af: Let (Encrypt, Verity) be a CPA- secure encryption scheme and (sign, Verify) be a secure MAC. We define

Encrypt- then- MAC to be the following scheme :

Encrypt
' ((ke

,
km)

, m) : c ← Encrypt (ke, m)
T T

ind¥t keys
t ← Sign (km, c)

output (c , t)

Decrypt
' ((KE, km) , Cc ,t)) : if Verify (km, c , -4=0, output t

else
, output Decrypt (ke , c)

Theorem .
If (Encrypt, Decrypt) is CPA - secure and (sign, Verify) is a secure MAC

, then (Encrypt
'

, Verify
') is an authenticated

encryption scheme
.

Protect. CPA - security follows by CPA- security of (Encrypt, Decrypt). Specifically, the MAC is computed on ciphertexts and nod

the messages . MAC key is independent of encryption key so cannot compromise CPA -

security.

Ciphertext integrity follows directly from MAC security lie, any valid ciphertext must contain a new tag on some

ciphertext that was not given to the adversary by the challenger .)

tmportantnotese: - Encryption t MAC keys must be independent. Above proof required this (in the formal reduction, need to be able to

simulate ciphertext / MACS - only possible if reduction can choose its own key).
↳ Can also give explicit constructions that are completelybnkg.it same key is used (ie, both properties fail to

hold)
↳ In general , never reuse cryptographic keys in different schemes ; instead, sample fresh, independent keys !

-

MAC needs to be computed over the entire ciphertext -

means first
←

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA -secure encryption) µ block lie, "header
")

is malleable- RNCrypto in Apple iOS (for data encryption) also problematic (HMAC not applied to encryption IV) -

MA_Encrypt : Let (Encrypt. Verify) be a CPA- secure encryption scheme and (sign, Verify) be a secure MAC. We define

MAC- then- Encrypt to be the following scheme :

Encrypt
' ((ke

,
km)

, m) : t ← Sign (km, m)

c ← Encrypt (KE , cm,-4)
output c

Decrypt
' ((KE, km) , Cc ,t)) : compute (mt) ← Decrypt (ke, c)

if Verify (km ,
m
, t) -- I , output m ,

else
, output I

Not generally secure! SSL 3.0 (precursor to TLS) used randomized CBC t secure MAC

↳
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

(POODLE attack on SSL 3.0 can decrypt all encrypted traffic using a CCA attack]

Padding is a common source of problems with MAC- then- Encrypt systems (see HWI for an example]

In the past, libraries provided separate encryption t MAC interfaces
-

common source of errors

↳ Good library design for crypto should minimize ways for users to make errors
, net provide more flexibility

Today , there are standard block cipher modes of operation that provideauthenticatedencryption-One.atthe most widely used is GCM (Galois counter model. - standardized by NIST in 2007

GCMm_ode: follows encrypt- then- MAC paradigm
- CPA - secure encryption is nonce- based counter mode } Most commonly used in conjaction with AES

- MAC is a Carter -Wegman MAC (AES-GCM provides authenticated encryption)

Carter - Wegman MAC (" encrypted MAC
") : very lightweight , randomized MAC :

- Let H : KH X M→ 90,13" be a keyed hash function security relies on a mild assumption on the hash function

- Let F : KF t R → {0,13
"

be a PRF and can be realized unconditionally
The Carter - Wegman MAC is defined as follows :

↳
security relies only on PRF security

sign ((KH , KF) , m) : r E R Verify ((kn, km) , Cr
,
t)) : output 1 if FCKF

,
r) to t = H(kn

,
m)

t s- H (ku
,
m) to Fl KF

,
r) and 0 otherwise

output (r , t) (Very simple construction !
but tags are longer (need both a nonce and a PRF output)

GCyptio : encrypt message with AES in counter mode f Galois
Hash

✓ key derived from PRF

compute Carter-Wegman MAC on resulting message using GHASH as the underlying hash function
evaluation at O

"

and the block cipher as underlying PRF [GHASH operates on blocks of 128-bits

operations can be expressed as operations over

Typically , use ALIEN for authenticated encryption
- GF (2128) - Galoisfield with 2128 elements

| implemented in harder - very fast
!

+
GF(2128) is defined by the polynomial g (x) = x'28 t X't X't X t 1
↳ elements are polynomials over Az with degree less than 128 (e.g. x

"'t X
"
t X't X t I]

(can be represented by 128 - bit string : each bit is coefficient of polynomial)
↳

can add elements (xor) and multiply them (as polynomials)
- implemented in hardware

[(
MED

,
me.] , mee])

(also used for evaluating the AES round function)

↳ GHASH (k, m) : = make t mask" t - - - t m le) k frayed;n.mn?aY;..e;a,mu%afivegoeffigientsot)
Oftentimes

, only part of the payload needs to be hidden
,
but still needs to be authenticated

↳ e.g. , sending packets over a network : desire confidentiality for packet body, but only integrity for packet headers (otherwise
,
cannot route!)

AEAD : authenticated encryption with associated data

↳
augment encryption scheme with additional plaintext input ; resulting ciphertext ensures integrity for associated data

,
but not confidentiality

(will not define formally here but follows straightforwardly from AE definitions)
↳
can construct directly via

"

encrypt - then- MAC
"
: namely, encrypt payload and MAC the ciphertext t associated data

↳ AES- GCM is an AEAD scheme

