
CS 6222: Introduction to Cryptography Spring 2020

Take-Home Midterm

Due: March 27, 2020 at 5pm (Submit on Gradescope) — No Late Days! Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp20/static/homework.tex

You must submit your problem set via Gradescope. Please use course code MB84NW to sign up. The
exam is divided into two sections: one on symmetric cryptography and one on public-key cryptography.
Each section contains three problems. You only need to answer two of the problems from each section
(for a total of four problems). If you answer more than two problems from any section, only the first two
will be graded. You may cite any result from lecture or the course lecture notes without proof.

Collaboration Policy. This is an individual assignment. You are not allowed to collaborate with anyone
on this problems and you are not permitted to search online for solutions to these problems. If you do
consult external sources (that cannot include solutions), you must cite them in your submission.

1 Symmetric Cryptography

Instructions. Answer any two of the three problems in this section. If you answer more than two
problems, only the first two will be graded.

Problem 1-1. Ciphertext Expansion [25 points]. In all of the CPA-secure encryption schemes we have
discussed, the length of the ciphertext is greater than the length of the plaintext length. In this problem, we
will show that this is necessary. Let (Encrypt,Decrypt) be a symmetric encryption scheme with message
space {0,1}n and ciphertext space {0,1}m .

(a) Suppose that n = m. Show that (Encrypt,Decrypt) cannot be CPA-secure.

(b) Suppose that m = n +` for some ` < n/2. Describe a CPA adversary that makes O(2`/2) queries
in the CPA-security game and distinguishes with constant probability. For simplicity (though not
necessary), your may assume that for any choice of key k and message m, the output distribution of
Encrypt(k,m) is uniform over a collection of up to 2` possible ciphertexts, where the distribution is
over the encryption randomness. Be sure to fully describe your attack and give a precise analysis of
the advantage (note that it suffices to lower bound the advantage by a constant).

Problem 1-2. CBC-MAC [25 points]. Let F : K× {0,1}n → {0,1}n be a secure block cipher, and let
FCBC : K× ({0,1}n)≤L → {0,1}n be the raw-CBC MAC from lecture. In lecture, we said that raw-CBC is
a secure PRF (and thus a secure MAC) for fixed-length messages (and more generally, prefix-free messages).

(a) Recall that raw-CBC uses a fixed IV (the all-zeroes string). Consider a randomized construction

where the signing algorithm samples a random IV
R←− {0,1}n and computes the MAC on a message

m = (m1, . . . ,m`) ∈ ({0,1}n)` as t ← FCBC(k, (m1⊕IV,m2, . . . ,m`)). The tag is the pair (IV, t ). Show that
randomized raw-CBC is insecure, even for signing fixed-length messages.
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(b) Suppose we apply the randomized construction from Part (a) to encrypted CBC-MAC; that is, the MAC

on m = (m1, . . . ,mt ) ∈ ({0,1}n)` is (IV, t ) where IV
R←− {0,1}n , t ← F (k2,FCBC(k1, (m1 ⊕ IV,m2, . . . ,m`))),

and k1,k2 are independent keys. Is this construction a secure MAC? Give either a proof or an attack.

(c) Suppose we use “encrypt-then-MAC” to construct an authenticated encryption scheme for a fixed-
length message space {0,1}n (i.e., one-block messages) by combining randomized counter-mode
encryption with raw-CBC MAC,1 except we use the same key for both the encryption scheme and

the MAC. Namely, an encryption of m ∈ {0,1}n consists of the tuple (IV,c, t) where IV
R←− {0,1}n ,

c ← F (k, IV)⊕m, and t ← FCBC(k, (IV,c)). Show that the resulting scheme is neither CPA-secure nor
provides ciphertext integrity (i.e., construct two separate adversaries). Remark: This shows that
reusing the same key for different cryptographic primitives can have severe consequences!

(d) Does the “encrypt-then-MAC” construction from Part (c) provide authenticated encryption for
the fixed-length message space {0,1}n if we use independent and uniformly random keys for the
randomized counter-mode encryption and raw-CBC MAC? Briefly justify your answer.

Problem 1-3. Encrypting Twice, Revisited [25 points]. Let (Encrypt,Decrypt) be a symmetric authenti-
cated encryption scheme with key-spaceK= {0,1}λ. Consider the encrypt-twice cipher (Encrypt2,Decrypt2)
with independent keys where Encrypt2((k1,k2),m) :=Encrypt(k2,Encrypt(k1,m)) and

Decrypt2((k1,k2),c) :=
{
Decrypt(k1,Decrypt(k2,c)) Decrypt(k2,c) 6= ⊥
⊥ otherwise.

(a) Show that (Encrypt2,Decrypt2) is still an authenticated encryption scheme even if the adversary

learns k1 (but has no information about k2
R←−K). Remember to show both CPA-security and ci-

phertext integrity. To model knowledge of k1, you can assume that the adversary is given k1 at the
beginning of the CPA-security and ciphertext integrity games.

(b) Show that (Encrypt2,Decrypt2) is no longer an authenticated encryption scheme if the adversary

learns k2 (but has no information about k1
R←−K). To model knowledge of k2, you can assume that

the adversary is given k2 at the beginning of the CPA-security and ciphertext integrity games.

(c) State how to use (Encrypt,Decrypt) to construct an authenticated encryption where keys are (k1,k2) ∈
K2 such that the cipher remains an authenticated encryption scheme even if the adversary learns
any one of the keys (but has no information about the the other). Your construction should not rely
on any primitive other than (Encrypt,Decrypt). For this part only, you do not need to provide a proof
of security for your construction, though you are welcome to do so (it is not difficult, but a bit tedious).

2 Public-Key Cryptography

Instructions. Answer any two of the three problems in this section. If you answer more than two
problems, only the first two will be graded. Throughout this section, please remember to justify the
existence of any inverses you compute (and in cases where there is ambiguity, say what algebraic structure
you are working over).

1A variant where we combine counter-mode encryption with encrypted CBC-MAC yields the CCM mode of operation—which
provides authenticated encryption.



Problem 2-1. Signatures from Discrete Log [25 points]. Let G be a group of prime order p with genera-
tor g . Consider the following digital signature algorithm where the message space is Zp :

• Setup : Sample x, y
R←− Z∗

p and compute h ← g x , z ← g y . Output the verification key vk = (g ,h, z)
and the signing key sk= (g ,h, z, x, y).

• Sign(sk,m): On input the signing key sk= (g ,h, z, x, y) and a message m ∈Zp , compute and output
the signature σ ∈Zp such that z = g mhσ.

• Verify(vk,m,σ): On input the verification key vk= (g ,h, z), a message m ∈Zp and a signatureσ ∈Zp ,
output 1 if z = g mhσ and 0 otherwise.

(a) Show how to efficiently implement the signing algorithm Sign(sk,m) (i.e., give an efficient algorithm
to compute σ from sk= (g ,h, z, x, y) and m).

(b) Show that under the discrete log assumption in G, this signature scheme satisfies selective one-time
security. In the selective one-time security game, the adversary is allowed to make a single signing
query on an arbitrary message m ∈ Zp before seeing the verification key vk. The adversary wins
if it outputs a pair (m∗,σ∗) such that Verify(vk,m∗,σ∗) = 1 and m∗ 6= m. Specifically, the selective
one-time signature security game proceeds as follows:

Adversary Challenger

m ∈Zp−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
vk, σ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m∗, σ∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Here, the challenger samples (vk,sk) ← KeyGen and σ ← Sign(sk,m), and the adversary wins if
Verify(vk,m∗,σ∗) = 1 and m 6= m∗. To show this, you should show how to use an efficient adversary
A for the selective one-time signature security game to construct an efficient adversary B for the
discrete log game (for G).

(c) Show that an adversary who sees two message-signature pairs (m1,σ1) and (m2,σ2) under vk where
m1 6= m2 can forge signatures on arbitrary messages m ∈Zp . This shows that this scheme can only
be used to sign a single message.

Later on in this class, we will show how to construct signature schemes based on the discrete log assump-
tion that can be used to sign multiple messages.

Problem 2-2. Computing on Encrypted Data [25 points]. Let N = pq be an RSA modulus where
gcd(N ,ϕ(N )) = 1. Consider the following public-key encryption scheme with message space ZN . The
public key pk = N is the RSA modulus N = pq and the secret key sk is the factorization sk = (p, q). Let

g = 1+N ∈Z∗
N 2 . To encrypt a message m ∈ZN , sample h

R←−Z∗
N 2 and compute c ← g mhN ∈Z∗

N 2 .

(a) Show that the discrete logarithm assumption base g inZN 2 is easy. Namely, give an efficient algorithm
that takes as input (g ,h) where h = g x for some x ∈ ZN , and outputs x. Hint: Use the binomial
theorem: (a +b)k =∑k

i=0

(k
i

)
ai bk−i .



(b) Show how to efficiently implement the decryption algorithm Decrypt(sk,c). Namely, describe an
efficient algorithm that given the secret key sk = (p, q) and a ciphertext c = g mhN , outputs the
message m ∈ZN . You may use the fact that ϕ(N 2) = Nϕ(N ). Hint: Remember that the decrypter can
compute ϕ(N ) = (p −1)(q −1) from the secret key sk= (p, q).

(c) Show that this public-key encryption scheme is semantically secure assuming that no efficient
adversary is able to distinguish the following two distributions:

(N ,u) and (N , v),

where N = pq is an RSA modulus, u
R←− Z∗

N 2 and v
R←− {

h ∈ Z∗
N 2 : hN

}
. Namely, show that the above

encryption scheme is semantically secure assuming that it is hard to distinguish random values in
Z∗

N 2 from random N th powers in Z∗
N 2 .

(d) Show that given the public key pk and two ciphertexts c1 ← Encrypt(pk,m1), c2 ← Encrypt(pk,m2),
there is an efficient algorithm that outputs a new ciphertext c where Decrypt(sk,c) = m1 +m2 ∈ZN .
Your algorithm should only depend on public parameters and not the value of the messages m1,m2.
Remark: This is an example of an encryption scheme that supports computation on encrypted values.

Problem 2-3. Authenticated Key Exchange [25 points]. Consider the following protocol for authenti-
cated key exchange (AKE) with mutual (i.e., two-sided) authentication. Both the client and the server have
a public/private key-pair (vkC ,skC ) and (vkS ,skS) for a digital signature scheme, respectively. They also
have certificates certC and certS that authenticate vkC and vkS , respectively. The AKE protocol operates

over a groupG of prime order p and generator g . The client samples a fresh x
R←−Zp and the server samples

a fresh y
R←−Zp in each invocation of the protocol:

Client Server

g x , certC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
g y , certS , Sign(skS , (certC , g x , g y ))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sign(skC , (certS , g x , g y ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
In the second step, the client validates the signature with respect to the verification key contained in
certS before computing its third message. At the end of the protocol, if all of the signatures verify (with
respect to the verification keys identified by the certificates), the client and server computes the shared
key as k ← H(g , g x , g y , g x y ). Moreover, the client outputs the party identified by certS as its peer in the
connection and the server outputs the party identified by certC as its peer. Throughout this problem,
you should consider an active network adversary that is allowed to register a certificate of its own (i.e.,
the adversary has a certificate certA for its identity A, which is different from both the client’s identity C
associated with certC and the server’s identity S associated with certS).

(a) Suppose the server does not sign certC in its reply to the client. Namely, the server computes
Sign(skS , (g x , g y )) instead of Sign(skS , (certC , g x , g y )). Show that there is an identity misbindinng
attack on this protocol.

(b) Suppose the client only signed the server’s certificate and not the Diffie-Hellman shares in the final
message. Namely, the client computes Sign(skC ,certS) instead of Sign(skC , (certS , g x , g y )). Show that



an adversary is able to establish a session with the server such that the adversary knows the shared
key k, but the server thinks it is communicating with the party identified by certC (i.e., the client).
Hint: Remember that an active network adversary is allowed to observe (and tamper with) multiple
interactions between the client and the server.

(c) Suppose that the client signed its Diffie-Hellman share in its first message, and dropped the third
message entirely. Namely, the client’s first message is now (g x ,certC ,Sign(skC , g x )) and the overall
protocol now completes in two rounds. Show that there is an identity misbinding attack on this
protocol.

(d) Suppose that instead of signing the pair (g x , g y ), the client and server instead signed g x y . Explain
why this is a bad idea.

This exercise illustrates that designing AKE protocols is very delicate, and simple modifications will lead
to broken designs.
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