Instructor: David wu (dwut@cs.utexas.edu)
Previously... CS $346 / 388 \mathrm{H}$ provided introduction to cryptography
\rightarrow Focus was on secure communication
symmetric encryption, MAC, authenticated enoxption (based on OWFS/PRGs/PRFs) public-key encryption, digital signatures (bared on number-thearetic assumptions)

Today: cryptography enables secure computation
\rightarrow Can parties compute functions on their secret inputs without sharing then?
\rightarrow Can parties verify that a computation was pefforned correctly?
This course: Focus will be on how to construct advanced cryptographic objects for protecting + verifying computations

- Fully homomorphic encryption (FHE): given encryption of $x \Rightarrow$ encryption of $f(x)$ for any efficiently -computable \rightarrow ciphertexts are still semantically secure!
Enables outsourcing of computation to untrusted cloud

- Homomorphic signature: given signature on $x \Rightarrow$ signature on $f(x)$ for any efficiently-computable f
\rightarrow signatures are short: $|\sigma|=|f(x)|$ poly (λ)
private: σ only reveals $f(x)$, hides x
Enables ability to check computations on data

Alice knows that f

- for example, x might be a large was properly computed on x (without needing to know or store x) f is a query
- Functional encryption: decryption recovers a function of the message
\rightarrow Cipperterts associated with a message $x \Rightarrow$ decryption yields $f(x)$ and nothing more about x Keys are associated with a function f

$$
\left.\begin{array}{l}
L^{x} \text { could be an exail } \\
f \text { could be a spam fitter }
\end{array}\right\} \begin{aligned}
& \text { allows spam filtering on } \\
& \text { encrypted messaging }
\end{aligned}
$$

Many fancy capabilities - many of these are currently theoretical constructions
\rightarrow Some of these are on the cusp of becoming practical and enable new pisiacy-preverving systems $\}$ both!

Administrivia:

- Course website: https:/|www.cs.utexas.edu/~dwu4/courses/sp22
- See Piazza for announce ments, notes will be posted to course website (1-2 days after lecture)
- Course consists primarily of project: can be a survey on topic of your choosing, an implementation project, or research
- Consists of project proposal, milestone report, and final report
- Can work in teams of 2

See website for deadlines

- Should work on project throughout the semester
- Encouraged to discuss ideas with me in advance
- There will be 2 homework assignments: one due before spring break, one due at end of semester
- Problems will be added as semester progresses (~ 1 problem every $1-2$ weeks)
- Need to submit at least 70% of problems (rounded down)
- You will reed to scribe two lectures (one in each half of semester)
- Scribe notes should be edited for completeness + typos, due week following lecture

Prerequisites: Will assume familiarity with concepts from CS 388 H (e.g., hybrid arguments, random oracle model, simulation-bared deft)
This semester: Lectures will be simultareassly broadcast over Zoom and recorded
Please participate virtually if you are feeling unwell

Course focus: lattice-based cryptography

- Conjectured post-quantum resilience
- Number-theoretic assumptions like discrete \log and factoring are insecure against quantum computers f defines H (typical approach is to solve a hidden subgroup problem in an abelian group)
- Leading candidate in ongoinst NIST post-quantum standardization efforts
- Security based on worst-care hardness
- Cryptography has typically relied on average-care hardness (ie., there exists some distribution of hard instances)
- Lattice-based cryptography can be based on worrt-care hardness (there does not exist an algorithm that saves all instances)
- Enables advanced cryptographic capabilities

Definition: An n-dimensional lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is a discrete additive subspace of \mathbb{R}^{n}

- Discrete: For every $x \in \mathcal{L}$, there exists a neighborhood around x that only contains x :

$$
\begin{aligned}
& 0 \cdot \\
& \hdashline \text { ••• } \\
& \begin{array}{l}
\text { neighborhood } B_{\varepsilon}(x)=\left\{y \in \mathbb{R}^{n}:\|x-y\| \leqslant \varepsilon\right\} \\
\text { discrete means } B_{\varepsilon}(x) \cap \mathcal{L}=\{x\}
\end{array}
\end{aligned}
$$

- Additive subspace: For all $x, y \in \mathcal{L}: x+y \in \mathcal{L}$

$$
-x \in \mathcal{L}
$$

Examples: \mathbb{Z}^{n} (n-dimensional integer-valued vectors)
$q \mathbb{Z}^{n}$ (n-dimensional integervalued vectors where each coordinate is multiple of q) " q-arr" lattice

Lattices typically contain iafinitely-many points, but are finitely-generated by taking integer linear combinations of a small number of basis vectors:

$$
B=\left[b_{1}\left|b_{2}\right| \cdots \mid b_{k}\right] \in \mathbb{R}^{n \times k} \quad \text { (vectors are linearly independent over } \mathbb{R} \text {) }
$$

$$
\begin{aligned}
\mathcal{L}(B) & =\left\{\sum_{i[\in[n]} \alpha_{i} b_{i} \mid \alpha_{i} \in \mathbb{Z}\right\} \quad \begin{aligned}
& k \text { is the rank of the lattice } \\
& \text { (full-rank: } k=n \text {) }
\end{aligned} \\
& =B \cdot \mathbb{Z}^{k}
\end{aligned}
$$

A lattice can have many basis:
standard basis for $\left.\mathbb{Z}^{2} \quad\right\}$ choice of basis makes a big difference in hardness of lattice problems alternative basis for $\left.\mathbb{Z}^{2}\right\} \rightarrow$ often: bad basis is public key good basis is trapdoor

Definition. Let \mathcal{L} be $a_{n} n$-dimensional lattice. Then, the minimum distance $\lambda_{1}(\mathcal{L})$ is the norm of the shortest nonzero vector in \mathcal{L} :

$$
\lambda_{1}(\mathcal{L})=\min _{v \in \mathcal{L} \backslash\{0\}}\|v\|
$$

The $i^{\text {th }}$ successive minimum $\lambda_{i}(\mathcal{L})$ is the smallest $r \in \mathbb{R}$ such that \mathcal{L} contains i linearly independent basis vectors of norm at mot r.

