Addition: $C_{1}+C_{2}$ is encryption of $\mu_{1}+\mu_{2}$:

$$
C_{1}+C_{2}=A\left(R_{1}+R_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot G
$$

New error: $R_{+}=R_{1}+R_{2},\left\|R_{+}\right\|_{\infty} \leqslant\left\|R_{1}\right\|_{\infty}+\mathbb{R}_{2} \|_{\infty}$
Multiplication: $C_{1} G^{-1}\left(C_{2}\right)$ is encryption of $\mu_{1} \cdot \mu_{2}$:

$$
\begin{aligned}
C_{1} G^{-1}\left(c_{2}\right) & =\left(A R_{1}+\mu_{1} G\right) G^{-1}\left(c_{2}\right) \\
& =A R_{1} G^{-1}\left(c_{2}\right)+\mu_{1} G \cdot G^{-1}\left(c_{2}\right) \\
& =A R_{1} G^{-1}\left(c_{2}\right)+\mu_{1} C_{2} \\
& =A R_{1} G^{-1}\left(c_{2}\right)+\mu_{1}\left(A R_{2}+\mu_{2} G\right) \\
& =A(\underbrace{R_{1} G^{-1}\left(c_{2}\right)+\mu_{1} R_{2}}_{R_{x}})+\mu_{1} \mu_{2} G \\
\text { New error: } R_{x} & =R_{1} G^{-1}\left(C_{2}\right)+\mu_{1} R_{2}, \quad\left\|R_{x}\right\|_{\infty} \leqslant\left\|R_{1}\right\|_{\infty} \cdot m+\left\|R_{2}\right\|_{\infty}
\end{aligned}
$$

After computing d repeated squarings: noise is $m^{0(d)} \quad\left[\right.$ for correotress, require that $q>4 m B \cdot\|R\|_{\infty}$, so bittlength of of scales with $]$ multiplicative depth of circuit
\longrightarrow also requires super-poly modulus when $d=\omega(1)$
(stronger assumption needed)

But not quite fully homonorphic encryption: we reed a bound on the (multiplicative) depth of the computation
From SWHE to FHE. The above construction requires imposing an a prior bound on the multiplicative depth of the computation. To obtain fully homomorphic encryption, we apply Gentry's brilliant insight of bootstrapping.

High-level idea. Suppose we have SWHE with following properties:

1. We can evaluate functions with multidicative depth d
2. The decryption function can be implemented by a circuit with multiplicative depth $d^{\prime}<d$

Then, we can build an FHE scheme as follows:

- Public key of FHE scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the SWHE public key
- We now describe a ciphertext-refreshing procedure:
- For each SWHE ciphertext, we can associate a "noise" level that keeps track of how many more homomorphic operations can be performed on the ciphertest (while maintaining correctness).
\rightarrow for instance, we can evaluate depth-d circuits on fresh ciphertexts; after evaluating a single multiplication, we can only evaluate circuits of depth -(d-1) and so on...
- The refresh procedure takes any valid ciphertext and produces one that supports depth-(d - d^{\prime}) homomorphism; since $d>d^{\prime}$, this enables unbounded (ie., arbitrary) computations on ciphertats

Idea: Suppose we have a ciphertext ct where $\operatorname{Decrypt}(s k, c t)=x$.
To refresh the eiphertext, we define the Boolean circuit $C_{c t}:\{0,1\}^{n \log q} \rightarrow\{0,1\}$ where $C_{c t}(s k):=\operatorname{Decrypt}(s k, c t)$ and homomorphically evaluate $C_{c t}$ on the encryption of $s k$

$$
\mapsto E_{\text {nerypt }}(p k, s k) \rightarrow E_{\text {nerypt }}\left(p k, C_{c t}(s k)\right)
$$

Security now requires that the public key includes a copy of the decryption bey \rightarrow Requires making a "circular security" assumption

Open question: FHE without circular security from LWE (possible from :0)

\longrightarrow specifically: $s^{\top} C \approx \mu \cdot s^{\top} G$
let C_{m} be last column of C

$$
\Rightarrow \mu \cdot s^{\top} c_{m}=\mu\left[-\tilde{s}^{\top} \mid 1\right] c_{m}=\mu \cdot \frac{q}{2}
$$

L similar analpis apples for non-pueser-of-2

Let's take a closer look at bootstrapping for GSW encryption:
$p k: A \in \mathbb{Z}_{\delta}^{n \times m}$
Enc $(p k, \mu): C \leftarrow A R+\mu \cdot G$
$s k: s \in \mathbb{Z} \hat{q} \quad \operatorname{Dec}(s k, C):$ compute $s^{\top} C$ and round $\quad\left[\right.$ recall : $\left.s^{\top} C=s^{\top} A R+\mu \cdot s^{\top} G=e^{\top} R+\mu \cdot s^{\top} G\right]$
Consider a computation with multiplicative depth d : can support by setting $q>m^{o(d)}$
Consider depth of circuit implementing GSW decryption: circuit has ciphartext column $C_{m} \in \mathbb{Z}_{q}^{n}$ hard-wired and takes secret key
Need to compute round $\left(s^{\top} \mathrm{Cm} \bmod q\right.$) as a Boolean circuit: $s \in \mathbb{Z}_{\delta}^{n}$ as input

- We can write

> a $i^{\text {th }}$ component of cm_{m} (available in the clear)
> multiplication by 1 bit = AND gate

Computing $S^{\top} C_{m}$ over the integers can be computed by $O(n \log q)$ additions of values with $O(\log n+\log q)$ bits
Using an addition tree, this can be computed by a circuit of depth $O(\log n+\log \log q) \leftarrow$ need to be careful since adding 2 k-bit

- Given $s^{\top} C_{m}$ over the integers, need to reduce \bmod of
\rightarrow Can do this brute force: $\left|s^{\top} c_{m}\right| \leq n \log q \cdot q$, so reed to subtract by at most valves requires àrcciit of depth $O(\log k)$, $n \log$ q multiples of q sum only has $n \log _{6}$ term but can use a " $3 \rightarrow 2$ trick" to add $n k$-bit values in depth $o(\log n+\log k)$.
\longrightarrow Compute all possible multiples of q and select for the ore that is within $\mathbb{Z}_{\mathbb{q}}$
\longrightarrow Selection is the of AND gates, computable in depth $O(\log n+\log \log q)$
- Recovering $0 / 1$ from $S^{\top} C_{m}(\bmod q)$ is just rounding (checking most significant bits of binary representation - constant depth) Overall depth: $O(\log n+\log \log q)=O(\log n)$ since we always have $q<2^{n}$ (for security).

To bootstrap, it saffices to support multiplicative depth $O(\log n)$.
For correctness, we thus require that $q \sim m^{\circ(\log n)}$, so this is easily satisfiable!
\Rightarrow FHE from $L W E+$ circular security
But... we did require super-polynomial modules for correctness: $q>m \mathrm{O}(\log n)$. recall approximation factor bared on modulus-to-noise
\rightarrow Hardness based on worst-case lattice problems with super-polynamial approximation toctar - stronger assumption then for PKE
Can do better by relying on asymmetric noise growth of GSW multiplication:

$$
\begin{aligned}
C_{1}=A R_{1}+\mu_{1} G \Rightarrow C_{x} & =C_{1} G^{-1}\left(C_{2}\right) \\
C_{2}=A R_{2}+\mu_{2} G & =A(\underbrace{R_{1} G^{-1}\left(C_{2}\right)+\mu_{1} R_{2}}_{R_{x}})+\mu_{1} \mu_{2} G \quad\left\|R_{x}\right\|_{\infty} \leqslant\left\|R_{1}\right\|_{\infty} \cdot m+\left\|R_{2}\right\|_{\infty}
\end{aligned}
$$

Observe: R_{x} only scale R_{1}, dependence on R_{2} is additive

Suppose we have C_{1}, \ldots, C_{t} with noise R_{1}, \ldots, R_{t} where $\left\|R_{i}\right\|_{\infty} \leqslant B$ for all $i \in[t]$.
Consider sequence of homomarphic multiplications where each multiplication involves one of C_{1}, \ldots, C_{t}. Then, noive accumulation after T multiplications is bounded by $T \cdot B \cdot m$

Leach multiplication increase noise by additive factor B•m

Key takeaway: if input to every multiplication is a fresh ciphertext, then noise gust is additive not multiplicative in the depth
$\sqrt{\text { very efficient private information retrieval protocols }}$
Asymmetric noise growth extremely useful both theoretically and practically!
T- base security on weaker assumptions (\approx PK!)

How to exploit in the cave of bootstrapping? Rounded inner product does not necessarily have this form...

Branching programs: one way to capture space-bounded computations
State can be expressed as an indicator vector $v \in\{0,1\}^{w}$

length l of branching program

Transition can be expressed as matrix product correspondingly to transition
width of broaching program
(captures "space" usage of program)
Example:

$$
\begin{aligned}
& M^{(0)}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& M^{(1)}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \text { transition for } \\
& \text { reading } 0 \\
& \text { reading } 1
\end{aligned}
$$

layered branching program: graph cam be decomposed into layers, edges only between adjacent layers on each layer, program reads 1 bit of the input (same bit of input is read for all nodes in the layer)
\rightarrow Important: same bit of input can be read multiple times
Theorem (Barrington). Let $C:\{0,1\}^{k} \rightarrow\{0,1\}$ be a Boolean circuit with depth d and fan-in 2 (ie., each gate has taws inputs). Then, we can compute C using a permutation branching progzon of length $l \leq 4^{d}$ and with 5 .
transition matrix can be described by a permutation matrix
In particular, if $d=O(\log n)$, the length of the branching program is $\ell \leq 4^{d}=4^{O(\log n)}=$ poly (n).
Let $B P=$ (imp, $M_{i, 0}, M_{i, 1}$) be a branching program on input $x \in\{0,1\}^{n}$ with length l and width w:

- inf: $l l] \rightarrow[n]$ specifies which bit of input to read in given layer
$-M_{i, 0}, M_{i, 1} \in\{0,1\}^{\text {waw }}$ specifics transition for reading 0 or 1 in layer i
- Let $v_{0}=\left[\begin{array}{l}1 \\ \dot{j}\end{array}\right]$ be initial state.
- Let $t \in\{0,1\}^{\omega}$ be indicator for accepting states in output layer
- Can compute $B P(x)$ as:

$$
B P(x)=t^{T} \cdot A_{\left.l, x_{\text {ip } l}\right)} \cdot A_{l-l x_{\text {in }(l-1)}} \cdots A_{1, x_{\text {inf }}(1)} \cdot v_{0}
$$

To compute homonorphically: given fresh encryptions of bits of x, homonorphically compute

$$
\left.A_{i, x_{i n} p(}\right)=x_{1} \cdot A_{i, 1}+\left(1-x_{1}\right) \cdot A_{i, 0} \longleftarrow \text { if encryptions of } x \text { have noive at most } B \text {, }
$$ then encryptions of $A_{i, i n p}(i)$ has noise at most $2 B$

Homonorphically compute sequence of product

$$
t^{\top} \cdot A_{l, x_{i n p(l)}} \cdot A_{l-1, x_{i n p(l-1)}} \cdots A_{l, x_{i-1}(1)} \cdot v
$$

Observe: Each product involves at least one "fresh" ciphertext $A_{i, x_{i n g}}(i)$, so by asymmetric noise growth of GSW multiplication, overall noise is $l \cdot B \cdot p o l y(m)$

Decryption circuit has depth $O(\log n)$ so associated branching program $B P$ has length $4^{d}=$ poly (n).
\longrightarrow Overall noise from bootstrappiy: $\ell \cdot B \cdot$ poly $(m)=$ poly (n)
For correctness, it now suffices to use $q=p o l y(n)$, so can get $F H E$ with polynomial modulus of
further improvements passible!

