Next up: homomorphic signatures

Client
server

$$
\begin{aligned}
& \sigma \leftarrow S_{\text {ign }}(v k, x) \\
& x, \sigma \\
& y \leftarrow f(x) \\
& f \\
& y_{y, \sigma_{f, y}} \sigma_{y} \leftarrow E_{v a l}(f, x, \sigma)
\end{aligned}
$$

\downarrow
checks that $\sigma_{f, y}$ is a signature on y with respect to function f
τ can vies as signature on pair $(f, y) \longleftarrow$ Why not just on y alone?
Requirements: Unforgeability: Camot construct signature σ on (f, y) where $y \neq f(x)$.
(will formdize later)
Succinctness: Size of $\sigma_{f, y}$ should be $|y| \cdot p o l y(\lambda)$. In particular, should not depend on $|x|$ or $|f|$.
\rightarrow Otherwise trivial to construct! (Outputting $(\sigma, x, f(x)$) suffices).
Efficient verification: Can decompose verification algorithm as follows: \longrightarrow Also the case for FHE! computing f

$$
\begin{aligned}
& \text { - Preprocess }(v k, f) \rightarrow v k_{f} \\
& \text { - Verify }\left(v k_{f}, y, \sigma\right) \rightarrow 0 / 1 \\
& \text { as on authenticated data. } \\
& \text { challenger } \\
& \text { (uk, sk) } \leftarrow \text { Key Gen }\left(1^{\lambda}\right)
\end{aligned}
$$

Generates short function verification bey $v k_{f}\left(\left|v k_{f}\right|=p o l y(\lambda, d)\right)$ Runs in time poly $(\lambda, d, \mid y)$)

Homomorphic signatures allow computations on authenticated date.

Defining unforgeability: adversary

$$
\begin{aligned}
& \text { Onetime security }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Verity}\left(v k, y, \sigma_{f, y}\right)=1
\end{aligned}
$$

Construction: relies on similar homomorphic structure as GSW (for message space $\{0,1\}^{\ell}$)

- Key Gen $\left(1^{\lambda}\right)$: Set lattice parameters $n=n(\lambda), q=q(\lambda)$. Let $s=s(\lambda)$ be Gawsian width parameter for preimage sampling.

Sample $(A, T) \leftarrow \operatorname{Trap} G_{e n}(n, q) \quad\left[A \in \mathbb{Z}_{\xi}^{n \times m}, T \in\{0,1\}^{m \times t}\right]$
Sample $B_{1}, \ldots, B_{l} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times t} \quad \longrightarrow A T=G \in \mathbb{Z}_{q}^{n \times t} ; t=n\lceil\log q\rceil$
Output uk $=\left(A, B_{1}, \ldots, B_{e}\right), \quad s k=T$

- Sign $(s k, x):$ Compute $R_{i} \leftarrow \operatorname{Sample} \operatorname{Pre}\left(A, T, B_{i}-x_{i} G\right)$ for $i \in[l]$

In particular:

$$
\begin{aligned}
A\left[R_{1}|\cdots| R_{l}\right] & =\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} G\right] \quad\left(R_{i} \in \mathbb{Z}_{q}^{m \times t}\right) \\
& =\left[B_{1}|\cdots| B_{l}\right]-x \otimes G
\end{aligned}
$$

Output $\sigma=\left(R_{1}, \ldots, R_{l}\right)$

- Verity $(v k, x, \sigma):$ Check that $\left\|R_{i}\right\| \leq B$ where $B=s \cdot \omega(\sqrt{\operatorname{logn}})$ and that $A\left[R_{1}|\cdots| R_{l}\right] \stackrel{?}{=}\left[B_{1}|\cdots| B_{l}\right]-x \otimes G$
signatures
verification beys
Homomorphic evaluation: $A\left[R_{1}|\cdots| R_{l}\right]=\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} G\right]$
To derive a signature on the sum of two bits $\left(x_{i}+x_{j}\right)$: - news verification component associated with

$$
\left.\begin{array}{l}
R_{+}=R_{i}+R_{j} \\
B_{+}=B_{i}+B_{i}
\end{array}\right\} \text { verification: } A R_{+} \stackrel{?}{=} B_{+}^{L}-\left(x_{i}+x_{j}\right) G \quad \text { addition operation }
$$

$$
B_{+}=B_{i}+B_{j}
$$

$L_{\text {new signature }}$
To derive a signature on the product of two bits $\left(x_{i} x_{j}^{\prime}\right)$:

$$
\begin{gathered}
A R_{i}=B_{i}-x_{i} G \Rightarrow \text { desire something of the form } \\
A R_{j}=B_{j}-x_{j} G \\
\\
\downarrow
\end{gathered}
$$

function of R_{i}, R_{j} function of B_{i}, B_{j} - should not depend on x_{i}, x_{j} and x_{i}, x_{j} (verification algorithm does not know x)
(should be short)
function of signature, input function of public key only

$$
\left\|R_{x}\right\|_{\infty} \leqslant\left\|R_{j}\right\|_{\infty} \cdot t+\left\|R_{i}\right\|_{\infty} \quad \text { (this is } G s w \text { honomerphic multiplication) }
$$

Obsenation:

$$
\begin{array}{ll}
R_{t}=R_{i}+R_{j} & =\left[R_{i} \mid R_{j}\right]\left[\frac{I_{t}}{I_{t}}\right] \\
R_{x}=R_{i}\left(x_{j} I_{t}\right)+R_{j} G^{-1}\left(R_{i}\right) & =\left[R_{i} \mid R_{j}\right]\left[\frac{x_{j} I_{t}}{G^{-1}\left(R_{i}\right)}\right]
\end{array}
$$

$$
\tau_{R_{x}}
$$

Compose above operations to compute signature on $R_{f, x}$ on evaluation $f(x)$
By above analysis, multiplication scales noise by a factor of t so if f can be computed by a circuit of depth $d,\left\|R_{f, x}\right\|_{\infty} \leqslant t^{o(d)}$

To verify a signature $R_{f, x}$ on $(f, z=f(x))$, verifier computes B_{f} from B_{1}, \ldots, B_{l} and checks that $\left\|R_{f, x}\right\|_{\infty}$ sufficiently sriall (bound $\sim t^{o(a)}$)

$$
A R_{f, x}=B_{f}-z \cdot G
$$

More generally:

$$
R_{f, x}=\left[R_{1}|\cdots| R_{l}\right] \cdot H_{f, x} \text { where } H_{f, x} \in \mathbb{Z}_{q}^{l t x t} \text { and }\left\|R_{f, x}\right\|_{\infty} \leqslant t^{o(\alpha)}=(n \log ,)^{o(\alpha)}
$$

where d is the (multiplicative) depth of the circuit computing f
Now, if $A R_{i}=B_{i}-x_{i} G$, then from the above,

$$
A R_{f, x}=B_{f}-f(x) \cdot G
$$

where B_{f} is the matrix obtained by evaluating f on B_{1}, \ldots, B_{l}
This can be expanded as

$$
\begin{aligned}
A R_{f_{x} x}=A\left[R_{1}|\cdots| R_{l}\right] H_{f_{1} x} & =\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} \cdot G\right] H_{f_{, x}} \\
& =B_{f}-f(x) \cdot G
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow A R_{i}=B_{i}-x_{i} G \rightarrow B_{i}=A R_{i}+x_{i} G \\
& A R_{j} G^{-1}\left(B_{i}\right)=\left(B_{j}-x_{j} \cdot G\right) G^{-1}\left(B_{i}\right) \\
& =B_{j} G^{-1}\left(B_{i}\right)-x_{j} B_{i} \\
& =B_{j} G^{-1}\left(B_{i}\right)-A\left(x_{j} R_{i}\right)-x_{i} x_{j} G \\
& \Rightarrow A\left(R_{j} G^{-1}\left(B_{i}\right)+x_{j} R_{i}\right)=B_{j} G^{-1}\left(B_{i}\right)-x_{i} x_{j} \cdot G \\
& R_{x}=R_{j} G^{-1}\left(B_{i}\right)+x_{j} R_{i} \quad B_{x}=B_{j} G^{-1}\left(B_{i}\right)
\end{aligned}
$$

