
Functional encryption
: generalization of attribute- based encryption and predicate encryption

↳ decryption reveals a function of the message

setup (H) → (mpk, Msk) Correctness:

Encrypt (mpk , x) → Ctx if lmpk, msk) ← Key Gen 117)

key Gen (msk, f) → skf Ctx ← Encrypt Cmpk , ✗7

Decrypt (sky , ctx) → ftx) skf ← Keybenlmsk, f)
then Decrypt (sky , ctx) = f- (x)

I> C- {on}

Sety : adversary challenger-tlmpk.ms/a)← setup (H)

<
mpk

f-
É sky ← Key Genfmsk, f)

×>
←É Ctb ← Encrypt lmpk , ✗b)
-t

.

É
t

#
f- (Xo) = ffx,) for all functions f

b' C- {on}
A submits to key-generation

secure if for all efficient and admissible adversaries A : oracle

/ Pr lb' = 1 I b-- o] - Pr [b' = I / b-- I] / = negl
Need to be careful with definition (for some classes of functions

,
a
"

trivially broken
"
scheme might satisfy this definition)

↳ But this is still a reasonable definition for a broad range of settings
↳ can strengthen definition to simulation -based definition -

many impossibilities in this setting
FE is a

very powerful primitive
-

some flavors imply obfuscation

Ida,
: consider a simple setting where we only need PKE

Singled : adversary can only see a single key for the FE scheme

Mainbuidingbok : garbled circuit (more generally : randomized encoding)
↳ common tool in cryptography, core building block for secure computation

Key ingredient :
"

garbling
"

protocol (garbled circuits)

truth table :

←☐AND " ^"
⇒

0

0 I 0
←

I 0 O

l l / I

1) Associate a pair of keys (ki
"

,
ki
") with each wire i. in the circuit

ki"

ki"A①-83 "i"
Kib) : key associated with wire valve b

ki ki"

ki" for wire i [symmetric encryption key]

2) Prepare gÉuth_tabe for the gate
↳ Replace each entry of truth table with corresponding key
↳ Encrypt output key with each of the input keys

¥iÉ|¥ oho← Encrypt (ki
"

, Encrypt (ki? KE't)

o ki" I ki' o ki"
⇒

Cto,← Encrypt (ki? Encrypt (ki! ki
"))) randomly shuffle ciphertext

I ki" O ki" O ki" cho← Encrypt (ki
"

, Encrypt (ki? ki
"
))

1 ki" I ki" t ki" et
, ,
← Encrypt (ki", Encrypt (kid

"
,
ki"))

3) Construct decoding table for output values

ki" ↳ 0

} Alternatively, can just encrypt output values instead of

Kj" m> 1 keys for output wires

General garbling transformation : construct garbled table for each gate in the circuit
, prepare decoding table for each output wire in the

circuit

Evaluating a garbled circuit : K , and take the output key to be the ciphertext
that decrypts

"""
"" "" "↳* with the input keys,

-

ki
"

,

← decode using decoding table

Invariant : given keys for input wires of a gate, can derive key corresponding to output wire
⇒ enables gate-by- gate evaluation of garbled circuit

↳
Rel : Evaluator needs to obtain Keys (labels) for its inputs (but without revealing which set of labels it requested)

µ, f-
number of input wires Lots of optimizations

!

Abstractly : Garble (1? c) → (E ,
{ Li lien] ,besom) Free✗OR : no need to provide garbled truth

Eval (E, { Lib
'
} ic.cn]) → y

table for ✗or gates
Half - Gates : only need 2 ciphertext> (instead

-

Cerys : For all circuits C :{0,13
"
→ {0,15 and all ✗ c- {0,15 : of 4) for each AND gate

if (E
,
{ did } item

,
beso ,B) ← Garble (tf , C), More recent : only need 1.5 ciphertexts per AND

Pr [Eval (I
,
{ Li"
"
}ieen]) = ccx)] = 1 gate ! (i.e . 1L?

"
/ = 1.5×+5 bits

[RR21]

-

Security : There exists an efficient simulator S such that for all circuits C:{0,17
"
→ {0,11m and ✗ c- {0,15 :

for (E
,
{ L!
"
}ic-ens.bc-eo.is) ← Garble (1? c) :

{ (E , { Li
""
} ic.cn]) } Is(1? C , ccx))

←
can also consider notion where only ICI is provided to S

Namely , the garbled circuit and onset of labels can be simulated just given the output ccx) .

Using garbled circuits for two - party computation
:

→ this is necessary
and sufficient for general multiparty computation (MPC)!

key-cryptographicbuildingb-k.ro oblivious transfer (OT)

sender (Mo , mi) receiver (b C- {0,13) sender has two messages Mo
,
M
,

c- receiver has a bit be {0,13

- f at the end of the protocol , receiver learns Mb , sender

Mb learns nothing

Ée :

circuit C

Alice (garbles)
←

Bob (evaluator)

¥iatÉ ¥iate€ty
1. Prepare garbled circuit I Prepare 0T queries for

for C bits of
y

<OTforlabdsfory_
2. Prepare 0T responsa

for Bob's inputs . Messages

correspond to wire labels.

OT responses for

labels of Bob's input

garbledciruitlabds-or-M.ci#putx
,

2. Evaluate garbled circuit

✓
single- key restriction needed because garbledto learn ((× , y)
circuit is not reusable

Two-party computation protocol is interactive . But still sufficient for single-day FE .

We will rely on a
" universal circuit

"

: U (C , X) : = ((X)

(U takes circuit C and X as input and outputs ccx))

CE

✗ =
U Ctx)
=

Ciphertext will be a garbled circuit for U along with wire labels for ✗ } decryption is garbled circuit

secret key (for circuit c) will allow recovering non-interactive the wire labels for C evaluation

