$n=2$ case is easy
Computational problems on lattices: [problems parameterized by lattice dimension n] (can solve exactly using Gauss' algorithm)

- Shortest vector problem (SVP): Given a basis B of an n-dimensional lattice $\mathcal{L}=\mathcal{L}(B)$, find $V \in \mathcal{L}$ such that $\|v\|=\lambda_{1}(\mathcal{L})$
- Approximate SUP $\left(S U P_{\gamma}\right):$ Given a basis B of an n-dimensional lattice $\mathcal{L}=\mathcal{L}(B)$, find $v \in \mathcal{L}$ such that $\|v\| \leqslant \gamma \cdot \lambda_{1}(\mathcal{L})$
- Decisional approximate SVP (GapSVP $)$: Given a basis B of an n-dimmional lattice $\mathcal{L}=\mathcal{L}(B)$, decide if $\lambda_{1}(\mathcal{L}) \leqslant 1$ or if $\lambda_{1}(\mathcal{L}) \geqslant \gamma$
(Promise problem: one of these cases is gaerranted)
- Approximate shortest independent vectors (SIVPY): Given basis of full-raank n-dimensioned lattice $\mathcal{L}=\mathcal{S}(B)$, output a set of linearly independent vectors $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ where $\left\|b_{i}^{\prime}\right\| \leqslant \gamma \cdot \lambda_{n}(\mathcal{L})$ for all $: \in[n]$.

Main problems we use for croptyraphy are short integer solutions (SIS) and learning with errors (LWE)
\rightarrow These reduce to GapsVP P_{y} and SIVP γ
\rightarrow Currently open: basing crypto on search-SVP (SVP or SVP γ)

Complexity of GapSVP depends on approximation factor γ :

unlikely to allow basing crypts on NP hardness since for approximation factors bigger than $\sqrt{n}, G \operatorname{aps} V P \gamma \in N P \cap \operatorname{coNP}$

Open questions: Derandomizing reductions for some gap?
($N P$-hardness result known for $l \infty$ norm up to nearly polynomial factors) Poly-time reductions for super-constant approximation factor?

Algorithms for SUP: Lenstra-Lenstra-Lousaz (ZLL) algorithm (lattice reduction)

- Polynomial time algorithm for $\gamma=2^{n \log \log n / \log n}$ approximation

- Can trade-off time for approximation factor: solve Gapsupg in time $2^{\Theta(n) \log \gamma)}$
- Same asymptotics with quantum algorithms

For cryptographic constructions, it is oftentimes more convenient to use average-case problems (which admit reductions from GapsVP)

- Specifically, we rely on the short integer solutions (SIS) or the learning with errors (WWE) problems, which are averaje-case problems
- Both the SIS and the LWE problems can be based on the hardiness of the GapSVP problem (egg., an adversary that solves SIS or LWE can be used to solve Capsup in the porst-case)

Short Integer Solutions (SIS): The SIS problem is defined with respect to lattice parameters n, m, q and a norm bound β. The SIS n, m, q, β problem says that for $A \stackrel{R}{\mathbb{Z}_{q}^{n \times m}}$, no efficient adversary can find a non-zero vector $X \in \mathbb{Z}^{m}$ where

$$
A x=0 \in \mathbb{Z}_{\S}^{n} \quad \text { and } \quad\|x\| \leqslant \beta
$$

In lattice-based cryptography, the lattice dimension n will be the primary security parameter.
Notes: - The norm bound β should satisfy $\beta \leq q$. Otherwise, a trivial solution is to set $x=(q, 0,0, \ldots, 0)^{\top}$.

- We need to choose m, β to be large enough so that a solution does exist.
\rightarrow when $m=\Omega(n \log q)$ and $\beta>\sqrt{m}$ a solution always exists. In particular, when $m \geqslant\lceil n \log q\rceil$, there always exists $x \in\{-1,0,1\}^{m}$ such that $A x=0$:
- There are $2^{m} \geq 2^{n \log q}=q^{n}$ vectors $y \in\{0,1\}^{m}$
- Since $A_{y} \in \mathbb{Z}_{q}^{n}$, there are at most q^{n} possible outputs of $A y y_{y_{1}} \neq y_{2} \in\{0,1\}^{m}$ such that $A y_{1}=A y_{2}$
- Thus, if we set $x=y_{1}-y_{2} \in\{-1,0,1\}^{m}$, then $A x=A\left(y_{1}, y_{2}\right)=A y_{1}-A y_{2}=0 \in \mathbb{Z}_{q}^{n}$ and $\left\|y_{1}-y_{2}\right\| \leqslant \sqrt{m}$

SIS can be viewed as an average-case $S V P$ on a lattice defined by $A \in \mathbb{Z}_{q}^{n \times m}$:

$$
\mathcal{L}^{\perp}(A)=\left\{x \in \mathbb{Z}^{m}: A x=0(\bmod q)\right\}
$$

$\uparrow \quad \tau$ in coding-theoretic terms, the matrix A is a "parity-cleck" matrix called a "q-ary" lattice since $q \mathbb{Z}^{m} \subseteq \mathcal{L}^{\perp}(A)$

SIS problem is essentially finding short vectors in the lattice $\mathcal{L}^{\perp}(A)$ where $A \notin \mathbb{Z}_{8}^{n \times m}$
Theorem. For any $m=$ poly (n), any $\beta>0$, and sufficiently large $q \geqslant \beta$ poly (n), there is a probabilistic polynomial time (PPT) reduction from solving GapSVP or SIVP γ in the worst case to solving SIS n, m, q, β with non-negligible probability, where $\gamma=\beta \cdot \operatorname{poly}(n)$.

Implication: Algorithm for $S I S_{n, m, q, \beta} \Rightarrow$ algorithm for GapSUP $/$ SIVPY in the worst case GapSUP $/$ SIVA $_{\gamma}$ hard in the worst case \Rightarrow SIS $_{n, m, q, \beta}$ hard on average
$\sqrt{\text { For cryptographic applications }}$
Tightness. Micciancio-Reger [MRO4]: $\gamma=\beta \cdot \tilde{O}(\sqrt{n})$ - can set β so that $\gamma=\tilde{O}(n)$ with $q=\beta \cdot \tilde{O}(n \sqrt{m})=n^{O(1)}$
Gentry-Peikert-Vaikuntanathan [GPV 08]: improved bound on q to be $q=\beta \cdot \tilde{O}(\sqrt{n})$ with $\gamma=\beta \cdot \tilde{O}(\sqrt{n})$ approximation factor
Micciancio - Peikert [MP12]: improve bound on of to $\beta \cdot n^{\varepsilon}$ for any $\varepsilon>0$ (nearly optimal since $\beta<q$)
(approximation factor in MPD bound depends on $l_{o \infty}$-norm rather than just l_{2}-norm)

Difficulty in these worst-care to average-case reductions is reeding to take an arbitrary problem instance and embedding it in a random instance
[We will not cover it today, but may discuss in future lecture]

