
Keim : Basic scheme from PKE but instead of evaluating f using the garbled circuit
, we

instead evaluate the FHE decryption function
,

which has complexity smaller than f

Security : ABE Security : labels not associated with ctfcx, hidden by semantic security [removes dependence on FHE secret key

Garbling security
: Can simulate garbled circuit t labels given only FHE. Decrypt 1- , -) and ftx)

FHE security : Replace encryption of Xo
with X

,

still only secure in the single- key setting (since garbled circuit is not reusable)

Recap : functional encryption (FE) provides fine-grained access to encrypted data
↳ general mechanism for achieving confidentiality with computation

N# : NIZK from lattices - integrity for computations

Useful building block : Blum's protocol for graph Hamiltonicity [previously : may have encountered protocol for 3- coloring]

Hamiltonian path problem : given a graph G = (V, E) , decide whether there is a cycle that visits
every

node exactlyonce_

Deciding whether a graph contains a Hamiltonian cycle is NP-complete

We will build a E- protocol for graph Hami/tonicity (3- round public - coin 2k protocol) :

peer
verifier

1. Sample random permutation
IT Perm [V]

g-
technically, commitments will depend on

2. Commit to edges in the permuted graph a set of public parameters / common reference string
Vij c- In] : if (ij) C- E

, Creil , # g-)
← Commit (1)

else
, Cali) ,aCj)

← Commit (o)

t.ci#.j-Ib- { on }

<
b

i-,if b. = 1 : open only the edges corresponding to
the Hamiltonian cycle

Completeness : Follows by inspection .

Sounding : Suppose G does net have a Hamiltonian cycle .

Suppose that the commitments are statistically binding.
1. Suppose prover commits to a graph G

'

that is not isomorphic to G
.

Then
,
if b-- 0 , prover Carino succeed.

2. Suppose prover commits to
a graph G

'
where G

'
=
IT (G) for some permutation 1T

Then
,
it b. = 1

, prover Canino-1 succeed

In both cases , prover succeeds with probability at most 42
.

ELEK : Simulator operates as follows :

1. Sample challenge bit b I { 0,1 }

2. If b = 0
, sample a random permutation Tl and construct commitments to IT (G)

. Output commitments along with openings.

If b= 1
, sample a random cycle graph , commit to 1 for edges in cycle graph and 0 elsewhere

. Output all commitments and

openings
for edges in cycle graph .

Correctness of simulation :

- b--0 case is perfectly simulated

-

b. = 1 case is computationally indistinguishable from real transcript (since commitments are hiding)
-

challenge bit sampled as in real protocol

To amplify soundness
, we can repeat the protocol 7 times in parallel .

f-
will be a useful property later on

Resulting protocol has soundness 2-?
1-

↳ For every choice of
prover message , there is now a single bad challenge string c C- { oil }

"
that allows prover to succeed

DesÉiÉK : secret key is needed to check proofs (i.e.
, single verifier)

-

Setup (E) → (pk.sk)
-

Prove (pk , X ,
W) → IT

- Verify fsk, × , a) → 0/1

co-mpletee.si If Rtx,w) = 1
,
then Cpk , sk) ← setup 11

")
,
Ti ← Prove Cpk, x , w) ,

Pr [Verify Csk , × , a) = 1) = 1

Sounds : af challenges
lpk.sk) ← setup (17)

Important : adversary does not have oracle access to Verify
-1€> (non-reus-ab.ie soundness)

↳
adversary wins if ✗ ¢2 and Verity /sk, × , a) = 1

-ÉYe : for all efficient adversaries
,
there exists an efficient simulator S such that for all Ex,w) ER :

lpk.sk) ← setup 117)

I { 45k , 5k, E) ← S(1? x) } Formulated as one-time{ IT ← Prove Cpk , w) } output (pI , 5k , X , F) security notion

output (pk, sk , ✗ , -11)

y
> general theme : removing interaction via setup

oÉIfE= : more challenge in E- protocol to the pub

'm;÷y
,
! ;÷÷µ

.
:|,! ,

9" sins" -14 "]

y
> in the case of FE

,
we took Yao's protocol and

prior V•mooe the challenge ✓committee

¥É to the public key
respo

Setup (E) : for i c- [a] and be {on }
,
(pkib! ski

"
) ± PKE

. Setup (E)

sample challenge bi
,
. . .

,
by ← {0,1 }

output pk
= {pk!

" }iecx]
,
be {o.is

sk = (skin , . . . , 5k¥
"
,
b
, , . . - , by)

Prove (pk, X , W) : construct first message 0, , . . . , Ox of ✗ copies of the E- protocol
for each Oi , compute response Z

,

!" and Z;
")

to be the responses associated with Oi and challenge bit 0/1

compute ctib) ← PKE
. Encrypt Cpk:(

b)

,
2-
,

!")

output proof IT
= (Oi , . . . , ox ,

et
,

"'
, cti

"
. .
. . ,
ct.io?ctI")

Verify (sk , ×, Ti) : decrypt responses Zibi) ← PKE
. Decrypt (skibi? cticbi

))

check that (Oi
,
bi
,
Z!")) is valid for each i c- Ex]

Completeness : Follows by correctness of PKE + completeness of E- protocol

Sounder : Follows by soundness of E- protocol
[The public key pk perfectly hides the challenge bits bi

, .
. .

,
box and b

, , . . - ,
bx I {oil}]

Zero-Knowledge_ : simulator takes input ✗ and operates as follows :

1. Use HVZK simulator to sample transcripts (Oi
,
bi , Z;) for each c- c- [A]

2. Sample Cpk!
"
,
ski") ← PKE

. Setup (H) for it [A] and be {o, I }

3. For each c- c- [a]
,
ctibi) ← PKE

.Encrypt t.sk?bi
)

,
Z ;)

ct.it
-bit ← PKE

. Encrypt (ski
'-bi? 01£ :/)

4. Output pk:{pk!
" } ic-exi.bc-lo.is

sk = (sk
,

"''
,
. . .

,
ski?")

IT = (OT , . . . , Ox ,
et

,

"'
,

et
,

"'
, .
. .

,
ct.io! cti")

To show that this transcript is computationally indistinguishable from real transcript, we can use a hybrid argument :

- Hybo : real game I PKE security
- Hyb ,

: replace cti
"-bit

with encryption
of all - zeroes string

-

Hybz : replace Gi
,
bi
,
Z;) with simulated transcript,

I HVZK security of 9- protocol

construction is not reusable . Suppose adversary has oracle access to Verify (Sk, •

,

•) - models reusability of the verification key sko

Problem: Malicious prover can learn the challenge (Lame challenge used for verification)

Underlying 2-protocol trivially broken it prover knows the challenge leg, can use HVZK simulator to obtain transcript)

How do we recover b
, , . . - , by from oracle access to Verify Gk, ;-) ?

proser verifier

1. Start with a valid proof of a
true statement ✗ :

Oi , - - - , %

honest proof : ciphertext / cti
" eti" - - - off

"

encrypt correct response .
ct

,

"' cti" - - -

ct;)
Verifier decrypts ctibi

)
and checks response

_É> Observe : Verifier Carino-1 decrypt ctitbi
)

and its output does not depend on

ctiltbi)

2. Replace cti
"
with encryption

of 1- If verifier still accepts , then it did not decrypt Ct!
"

so b
,
1=0 ⇒ b

,
=L

If verifier rejects , then it decrypts ct,
")

so b. = 0

↳ whether verifier rejects or not leaks b
,
!

First-run : from circular - secure FHE (not quite LWE, but close)

