In FHE, computation is supported for data encrypted under a single key
\mapsto But in practice, data might be distributed across many users
Question: Can we compute on ciphertexts encrypted by different users?
Application: 2-round MPC (in CRS model)

1) Each party chooses a public key $p k_{i}$ and encrypts $c t_{i} \longleftarrow$ Encrypt ($p k_{i}, x_{i}$)
2) Homomorphically evaluate f on $\mathrm{ct}_{1}, \ldots, c t_{n}$ to obtain encryption of $f\left(x_{1}, \ldots, x_{n}\right) \quad$ [Non-inteructive]

$$
P_{2}\left(x_{2}\right) \longleftrightarrow P_{3}\left(x_{3}\right)
$$

3) Jointly decrypt computed ciphertext
\longrightarrow Joint decryption must involve all users who contributed a ciphertext to the computation! [Otherwise, can compromise semantic security]

Syntax: $\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow$ ers

$$
K_{e y} \operatorname{Gen}(c r s) \rightarrow(p k, s k)
$$

Encrypt (pk, $x) \rightarrow c t$
Important: Encryption only takes one key as input
$\operatorname{Eval}\left(p k_{1}, \ldots, p k_{N}, c t_{1}, \ldots, c t_{N}, c\right) \rightarrow c^{\prime}$ Evaluation can take any sequence of public keys and $\operatorname{Decrypt}\left(s k_{1}, \ldots, s k_{N}, c t^{\prime}\right) \rightarrow x$ ciphertexts
Decryption requires keys used during evaluation
Correctness : for all x_{1}, \ldots, x_{N} and circuits C,

$$
\begin{aligned}
& \text { crs } \leftarrow \operatorname{Setup}\left(1^{\lambda}\right) \\
& \quad\left(p k_{i}, s k_{i}\right) \leftarrow \text { Key Gen }(\text { cos }) \\
& c t_{i} \leftarrow \operatorname{Encrypt}\left(p k_{i}, x_{i}\right) \\
& c t^{\prime} \leftarrow \operatorname{Eval}\left(p k_{1}, \ldots, p k_{N}, c t_{1}, \ldots, c t_{N}, c\right) \\
& \left.\operatorname{Pr}\left[\operatorname{Decrypt}\left(s k_{1}, \ldots, s k_{N}, c t^{\prime}\right)\right]=C\left(x_{1}, \ldots, x_{N}\right)\right]=1
\end{aligned}
$$

Compactness: $\left|c t^{\prime}\right|=\operatorname{poly}(\lambda, d, N)$ where d is the depth of the circuit C
Does not depend on $|C|$ (otherwise, notion is trivial)

Semantic Security:

$$
\begin{aligned}
& \text { adversary challenger } \downarrow \\
& \text { cis } \leftarrow \operatorname{Setup}\left(1^{\lambda}\right) \\
& p k \leftarrow \text { Key Gen (ers) }
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \\
& b^{\prime} \in\{0,1\}
\end{aligned}
$$

For all efficient $A,\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{reg} \mid(\lambda)$

Starting point: GSW (single-key) FHE Scheme

$$
\left.\begin{array}{l}
p k: A=\left[\begin{array}{c}
\bar{A} \\
\bar{s}^{\top} \bar{A}+e^{\top}
\end{array}\right] \in \mathbb{Z}_{b}^{n \times m} \\
s k: s^{\top}=\left[\begin{array}{ll}
-s^{\top} \mid & 1
\end{array}\right] \in \mathbb{Z}_{q}^{n}
\end{array}\right\} s^{\top} A=e^{\top} \approx 0
$$

ct: $C=A R+x \cdot G$ where $R \leftarrow\{0,1\}^{\text {next }}$ where $t=n \log q \quad$ Decryption invariant: $S^{\top} C \approx x \cdot s^{\top} G$
Given $C_{1}=A R_{1}+x_{1} G, \ldots, C_{l}=A R_{l}+x_{l} G$,

$$
\left.\begin{array}{l}
{\left[C_{1}|\cdots| C_{l}\right] \cdot H_{f}=C_{f}} \\
{\left[C_{1}-x_{1} G|\cdots| C_{l}-x_{l} G\right] \cdot H_{f, x}=C_{f}-f(x) \cdot G} \\
A\left[R_{1}|\cdots| R_{l}\right]
\end{array}\right\} \begin{aligned}
& C_{f}=A\left[R_{1}|\cdots| R_{l}\right] \cdot H_{f, x}+f(x) \cdot G \\
& C \text { encryption of } f(x)^{\prime}
\end{aligned}
$$

Suppose now we have two GSW ciphertexts encrypted under different public beys but sharing the same \bar{A}

$$
\begin{array}{ll}
p k_{1}=A_{1}=\left[\begin{array}{c}
\bar{A} \\
\bar{s}_{1}^{\top} \bar{A}+e_{1}^{\top}
\end{array}\right] & p k_{2}=A_{2}=\left[\begin{array}{c}
\bar{A} \\
\bar{s}_{2}^{\top} \bar{A}+e_{2}^{\top}
\end{array}\right] \\
s k_{1}=s_{1}^{\top}=\left[\begin{array}{ll}
-\bar{s}_{1}^{\top} \mid 1
\end{array}\right] & s k_{2}=s_{2}^{\top}=\left[\begin{array}{ll}
-\bar{s}_{2}^{\top} \mid & 1
\end{array}\right]
\end{array}
$$

Suppose

$$
\begin{aligned}
& C_{1}=A_{1} R_{1}+x_{1} G \\
& C_{2}=A_{2} R_{2}+x_{2} G
\end{aligned} \Rightarrow C_{1}+C_{2}=\underbrace{A_{1} R_{1}+A_{2} R_{2}+\left(x_{1}+x_{2}\right) G}_{\text {undear how to decrypt! }}
$$

Key idea: "Expand" ciphertexts so that they are encryptions under the joint secret key $s^{\top}=\left[\begin{array}{lll}S_{1}^{\top} & \mid S_{2}^{\top}\end{array}\right]$.
Require expanded ciphertext satisfies the GSW decryption invariant
$s^{\top} \hat{C} \approx x \cdot s^{\top} \hat{G}$ where $\hat{G}=\left[\begin{array}{ll}G & 0^{n \times t} \\ 0^{n+t} & G\end{array}\right] \in \mathbb{Z}_{q}^{2 n \times 2 t} \quad$ (standard gadget matrix on $2 n$ rows) τ expanded ciplertext
Difficulty: Encryption algorithm takes in one public key - does not know anything about other public beys \rightarrow public keys only known at evaluation time
Approach: Include a "hint" with the ciphertext
Expanded ciphertext structure:
$\hat{C}=\left[\begin{array}{ll}C & X \\ 0 & C\end{array}\right]$ where C is the original ciphertert and X is derived from the hint and $p^{k_{2}}$
Requirement:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
s_{1}^{\top} & s_{2}^{\top}
\end{array}\right]\left[\begin{array}{ll}
C & X \\
0 & C
\end{array}\right] \approx\left[\begin{array}{l|l}
x \cdot s_{1}^{\top} G & \underbrace{s_{1}^{\top} X+s_{2}^{\top} C}]
\end{array}\right.} \\
& \text { need this to be } x \cdot s_{2}^{\top} G \Rightarrow\left[x \cdot s_{1}^{\top} G \mid x \cdot s_{2}^{\top} G\right] \\
& =x \cdot\left[s_{1}^{\top} \mid s_{2}^{\top}\right] \cdot \hat{G} \\
& =x \cdot s^{\top} \hat{G}
\end{aligned}
$$

Key Relation: $s_{1}^{\top} X+s_{2}^{\top} C \approx x \cdot s_{2}^{\top} G$ where $C=A, R+x \cdot G \quad\left(R \in\{0,1\}^{\mathrm{m}=\mathrm{m}}\right)$
Write $A_{1}=\left[\begin{array}{l}\bar{A} \\ b_{1}^{\top}\end{array}\right]$ where $b_{1}^{\top}=s_{1}^{\top} \bar{A}+c_{1}^{\top} \in \mathbb{Z}_{q}^{m}$

$$
A_{2}=\left[\begin{array}{l}
\bar{A} \\
b_{2}^{\top}
\end{array}\right] \text { where } b_{2}^{\top}=\bar{s}_{2}^{\top} \bar{A}+e_{2}^{\top} \in \mathbb{Z}_{q}^{m}
$$

Now,

$$
\begin{aligned}
s_{2}^{\top} C & =\left[\begin{array}{lll}
-\bar{s}_{2}^{\top} \mid & 1
\end{array}\right]\left[\begin{array}{l}
\bar{A} \\
b_{1}^{\top}
\end{array}\right] R+x \cdot s_{2}^{\top} G \\
& =-\bar{s}_{2}^{\top} \bar{A} R+b_{1}^{\top} R+x \cdot s_{2}^{\top} G \\
& \approx\left(b_{1}^{\top}-b_{2}^{\top}\right) R+x \cdot s_{2}^{\top} G \quad \text { public vector }
\end{aligned}
$$

upton rand

Sufficient to choose X such that $S_{1}^{\top} X \approx\left(b_{1}^{\top}-b_{2}^{\top}\right) R$

Idea: give out encryption of components of R as hint during evaluation, hemomorppically compute "eiphertext" that decrypts to $\left(b_{1}^{\top}-b_{2}^{\top}\right) R$

Abstractly, let $T \in\{0,1\}^{\mathrm{mmm}}$ be a matrix.
Given encerpptions of $\left\{T_{i j}\right\}_{i, j \in[m]}$ and a public vector $v \in \mathbb{Z}_{b}^{m}$. compute cippertext C such that

$$
s^{\top} C \approx v^{\top} T
$$

Define $Z^{(j)} \in\{0,1\}^{n \times m}$ where

$$
\begin{aligned}
& Z^{(i j)}=\left[\frac{0^{(n-1) \times m}}{v_{i} \cdot e_{j}}\right] \\
& \quad<e_{j} \in\{0,1\}^{m} \text { is } j^{-t h} \text { basis vector }
\end{aligned}
$$

Let $C=\sum_{i\left[\left\{m_{3}\right\} j([m]\right.} C_{i j} \cdot G^{-1}\left(Z^{(i j)}\right)$
Observe:
linear combination of rows of T

$$
\begin{aligned}
& s^{\top} C=\sum_{i, j \in[m]} s^{\top} C_{i j} \cdot G^{-1}\left(Z^{(i j)}\right) \\
& \approx \sum_{i, j \in(n)} T_{i j} \cdot s^{\top} G G^{-1}\left(Z^{\left(i j^{\prime}\right)}\right. \\
& =s^{\top} \sum_{i, j \in[m]} T_{i j} \cdot Z^{(i j)} \\
& =\sum_{i_{i j} \in(-m)} T_{i j}\left[\begin{array}{ll}
-s^{\top} \mid & \left.1]\left[\frac{0^{(n-1) \times m}}{v_{i} e_{j}^{\top}}\right], ~\right]
\end{array}\right. \\
& =\sum_{i, j \in[m]} v_{i} \underbrace{T_{i j} e_{j}^{\top}} \\
& \sum_{j \in[m]} T_{i j} j_{j}^{T}=t_{i}^{T} \quad(\text { isth row of } T) \\
& =\sum_{i \in(m)} v_{i} t_{i}^{\top}=v^{\top} T
\end{aligned}
$$

