Back to FHE:
Sufficient to choose X such that $s_{1}^{\top} X \approx\left(b_{1}^{\top}-b_{2}^{\top}\right) R$

Hint consists of

$$
V_{i j} \leftarrow A_{1} R_{i j}^{\prime}+R_{i j} \cdot G \text { where } R_{i j}^{\prime} \stackrel{R}{\leftarrow}\{0,1\}^{m \times m}
$$

(encryption of $R_{i j}$ under A_{1})
During evaluation time (When b_{1}^{\top} and b_{2}^{\top} are known), use $\left\{v_{i j}\right\}_{i, j}\left(-(m)\right.$ and $b_{1}^{\top}-b_{2}^{\top}$ in above procedure to obtain. $X \in \mathbb{Z}_{q}^{n \times m}$ where $s_{1}^{\top} X=\left(b_{1}^{\top}-b_{2}^{\top}\right) R$

Then, the expanded ciphertext is

$$
\begin{aligned}
\hat{C}=\left[\begin{array}{ll}
C & X \\
0 & C
\end{array}\right] \Rightarrow s^{\top} \hat{C}=\left[s_{1}^{\top} \mid s_{2}^{\top}\right]\left[\begin{array}{ll}
C & X \\
0 & C
\end{array}\right] & \approx\left[x \cdot s_{1}^{\top} G \mid s_{1}^{\top} X+s_{2}^{\top} C\right] \\
& =x \cdot\left[s_{1}^{\top} \mid s_{2}^{\top}\right] \cdot G
\end{aligned}
$$

Which is a GSW ciphertext with respect to $\left[s_{1}^{\top} \mid s_{2}^{\top}\right]$

If C is an encryption under $p k_{2}$, then expanded ciphertext will be

$$
\hat{C}=\left[\begin{array}{ll}
C & 0 \\
x & C
\end{array}\right] \Rightarrow s^{\top} \hat{C}=\left[s_{1}^{\top} C+s_{2}^{\top} x \mid s_{2}^{\top} c\right]
$$

τX is chosen so upon $s_{2}^{\top} X=\left(b_{2}^{\top}-b_{1}^{\top}\right) \cdot R$ (by including encryptions of bits of R)

More generally, with N public keys $p k_{1}, \ldots, p k N$, expanded ciphertext encrypted under phi has the form

$$
\left[\begin{array}{cccccc}
c & & & & & \\
& \ddots & & & & \\
x_{1} & \cdots & x_{i-1} & C & x_{i+1} & \cdots \\
& & & x_{N} \\
& & & & \ddots & \\
& & & & &
\end{array}\right] \longleftarrow \text { row } i
$$

$$
\begin{aligned}
\therefore \quad\left[s_{1}^{\top}|\cdots| s_{N}^{\top}\right] \hat{C} & =\left[s_{1}^{\top} C+s_{i}^{\top} X_{1}|\cdots| s_{i-1}^{\top} C+s_{i}^{\top} x_{i}\left|s_{i}^{\top} C\right| s_{i+1}^{\top} C+s_{i}^{\top} x_{i+1}|\cdots| s_{N}^{\top} C+s_{N}^{\top} X_{N}\right] \\
& \approx x\left[s_{1}^{\top}|\cdots| s_{N}^{\top}\right] \cdot G
\end{aligned}
$$

Application to MPC (in CRS model):

1) Every party generates a public key $p k_{i}$ and encrypts x_{i} using p k_{i} It broadcasts ct: to all parties
2) Every party homomosphically computes to get encryption of $f\left(x_{1}, \ldots, x_{N}\right)$
3) Parties decrypt the final siphertext (s)
\mapsto Requires combining the secret keys - would leak inputs if done naively!

Observation: Let $\hat{C} \in \mathbb{Z}_{q}^{N n \times N m}$ be final iphertext. Goal is to compute
$\left[s_{1}^{\top}|\cdots| s_{N}^{\top}\right] \cdot \hat{C} \quad$ where party i knows s_{i} and \hat{C}

$$
\begin{aligned}
\longrightarrow\left[s_{1}^{\top}|\cdots| s_{N}^{\top}\right] \cdot & {\left[\frac{\hat{C}_{1}}{\vdots}\left[\frac{\hat{C}_{N}}{}\right]=s_{1}^{\top} \hat{C}_{1}+\cdots+s_{N}^{\top} \hat{C}_{N}\right.} \\
& \hat{C}_{i} \in \mathbb{Z}_{q}^{n \times N m} \quad(i \text { each party computes one term of } \hat{C})
\end{aligned}
$$

To decrypt in the MPC setting, each party simply decrypts "locally" and publishes their "share" of the output To reconstruct output, simply sum all of the shares together

To prove simulation security for MPC protocol, parties add additional "smudging" noise to prevent partial decryption from leaking information.

Connection to secret sharing: In secret sharing scheme

t-out-of- n secret sharing: any subset of t shares can be used to reconstruct the secret s
Security: Any subset with fewer than t-shares reveals no information about the secret s
Namely, there exists a simulator S such that for all sets $T \subseteq[n]$ and all messages s :

$$
\left\{(s _ { i }) _ { i \in T } : (s _ { 1 } , \ldots , s _ { n }) \leftarrow \text { Share } (1 ^ { \lambda } , 1 ^ { n } , \Delta) \stackrel { s } { \approx } \left\{S\left(1^{\lambda}, 1^{n},||s|, T)\right\}\right.\right.
$$

Constructing n-out-of-n secret sharing:
Share $\left(1^{\lambda}, 1^{n}, s\right): T_{0}$ share a message $s \in\{0,1\}^{\ell}$, sample $s_{1}, \ldots, s_{n-1} \leftarrow\{0,1\}^{l-1}$ and set $s_{n} \leftarrow s_{1} \oplus \cdots \oplus s_{n-1} \oplus s$ Reconstruct $\left(s_{1}, \ldots, s_{n}\right)$: Output $s_{1} \oplus \cdots \oplus s_{n}$

Security is just one-fine pad security.

Constructing t-out- of -n secret sharing (Shamir secret sharing)
Share $\left(1^{\lambda}, 1^{n}, t, s\right)$: To share a message $s \in \mathbb{Z}_{p}$ (p is prime so \mathbb{Z}_{p} is a field), sample a random polynomial $f \in \mathbb{Z}_{p}[x]$ of degree $t-1$ where $f(0)=s$. In other words, sample $f_{1}, \ldots, f_{t-1} \& \mathbb{Z}_{p}$ and let

$$
f(x)=s+f_{1} x+\cdots+f_{t-1} x^{t-1}
$$

Output shares $s_{i} \leftarrow(i, f(i)$ for $i \in[n]$
Reconstruct ($\left\{s_{i}\right\}_{i} \in T$): Given at least t shares $\left(i, z_{i}\right)$ for $i \in T$, interpolate the unique polynomial of degree $t-1$ such that $f(i)=z_{i}$. Output $f(0)$.

Security: Follows from the fact that it takes t points to define a polynomial of degree $t-1$.

When all of the shares provided to the Reconstruct algorithm are valid, then reconstruction is just polynomial interpolation (can ak view as Reed-Solomon decoding - as an erasure code).

Homomorphic secret sharing (with additive reconstruction)

We will see some useful applications of this primitive soon.
Multi-key FHE $\Rightarrow 2$-party HSS

$$
\left.x \in\{0,1\}^{l} \longrightarrow \begin{array}{l}
\text { Sample key-pairs }\left(p k_{1}, s k_{1}\right) \text { and }\left(p k_{2}, s k_{2}\right) \\
\left.\begin{array}{l}
\text { Sample } x_{1}, x_{2} \leftarrow\{0,1\}^{l} \text { where } x_{1} \oplus x_{2}=x \\
\\
\\
\text { Compute } c t_{1} \leftarrow \text { Encrypt }\left(p k_{1}, x_{1}\right) \\
c t_{2} \leftarrow E \text { Encrypt }\left(p k_{2}, x_{2}\right)
\end{array}\right\} p k_{1}, p k_{2}, c t_{1}, c t_{2}, s k_{2}
\end{array}\right\} \text { shares }
$$

Homomorphic computation on shares इ homomorphic evaluation
\mapsto Remaining question: obtain additive secret shares of $f(x)$
Currently: after homomorphic computation: $\left[S_{1}^{\top} \mid s_{2}^{\top}\right] \cdot C \approx f(x) \cdot\left[S_{1}^{\top} \mid s_{2}^{\top}\right] \cdot G$

almost a secret share
(but ot a vector)
to obtain a scalar, observe that last component of secret key is 1 . Let $\omega=\left[0,0, \ldots, 0, \frac{q}{2}\right]^{\top}$.
Then $\left[s_{1}^{\top} \mid s_{2}^{\top}\right] \subset G^{-1}(\omega) \approx f(x) \cdot\left[s_{1}^{\top} \mid s_{2}^{\top}\right] \cdot G \cdot G^{-1}(\omega)=\frac{q}{2} \cdot f(x)$
$\Rightarrow s_{1}^{\top} C_{1} G^{-1}(\omega)+s_{2}^{\top} C_{2} G^{-1}(\omega)=\frac{q}{2} f(x)+e$ for some small error e \downarrow recover $f(x)$ by rounding (check if valve clover to 0 or $\frac{q}{2}$). Reconstruction is still not linear...

Observe: Suppose $t_{1}+t_{2}=\frac{q}{2} \cdot f(x)+e(\bmod q)$ where t_{1}, t_{2} uniform over \mathbb{Z}_{q} and e is small
Then round $\left(t_{1}+t_{2}\right)=\operatorname{round}\left(t_{1}\right)+\operatorname{round}\left(t_{2}\right)$ with high probability $(=1-0(\mathrm{el}) / q)$
possible error rounding and addition commute with high probability (for the cave of two shares)
regions
Suppose $f(x)=0$. Then
round $\left(t_{1}\right)+\operatorname{round}\left(t_{2}\right)=0$ if t_{1} and t_{2} are on the same side as rounding boundary interval of size $2|e|+1$
that contains t_{2} (so $t_{1}+t_{2}=e$)
error ocurrs only if t_{1} and t_{2} land on different sides of rounding boundary: prob. $2|e|+1 / q$
(techancally, this is smaller since only half of each interval can contribute to a rounding error - based on the sign of e)

Thus if $S_{1}^{\top} C_{1} G^{-1}(\omega)$ and $S_{2}^{\top} C_{2} G^{-1}(\omega)$ are individually uniform over \mathbb{Z}_{q} and q sufficiently large $\left.(q \sim \ln \log q)^{O(\alpha)}\right)$

$$
\begin{aligned}
& \operatorname{round}\left(s_{1}^{\top} C_{1} G^{-1}(\omega)+s_{2}^{\top} C_{2} G^{-1}(\omega)\right)=\operatorname{round}\left(s_{1}^{\top} C_{1} G^{-1}(\omega)\right)+\operatorname{round}\left(s_{2}^{\top} C_{2} G^{-1}(\omega)\right) \\
& \text { "II } \\
& \text { round }\left(\frac{q}{2} \cdot f(x)+e\right) \\
& \text { " } \\
& f(x)
\end{aligned}
$$

But... $s_{1}^{\top} C_{1} G^{-1}(\omega)$ may not be uniform. So cannot apply above analysis.
Solution: Re-randomize wing a secret share of 0 .
Namely, sample $r \mathbb{R}^{\mathbb{R}} \mathbb{Z}_{q}$ and give r to 1 party and $-r$ to the other:
$\left.\begin{array}{l}P_{1} \text { now computes } s_{1}^{\top} C_{1} G^{-1}(\omega)+r \\ P_{2} \text { now computes } s_{2}^{\top} C_{2} G^{-1}(\omega)-r\end{array}\right\}$ still a secret share of $\frac{q}{2} f(x)+e$
${ }^{C_{r}} r$ is independent of s_{1}, s_{2}, C
2-party HSS from multikey FHE:
Share $\left(1^{\lambda}, x\right):$ Sample ers $\leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$

$$
\begin{aligned}
& \left(p k_{i}, s k_{i}\right) \leftarrow \text { Key Gen (crs) for } i \in\{1,2\} \\
& x_{1} \leftarrow\{0,1\}^{l}, x_{2} \leftarrow x \oplus x_{1} \\
& c t_{i} \leftarrow \text { Encrypt }\left(p k_{i}, x_{i}\right) \\
& \delta_{1}{ }^{R} \not \mathbb{Z}_{q}, \quad \delta_{2} \leftarrow-\delta_{1}
\end{aligned}
$$

Output shares

$$
\begin{aligned}
& z_{1}=\left(p k_{1}, p k_{2}, c t_{1}, c t_{2}, s k_{1}, \delta_{1}\right) \\
& z_{2}=\left(p k_{1}, p k_{2}, c t_{1}, c t_{2}, s k_{2}, \delta_{2}\right)
\end{aligned}
$$

Eval $\left(f, z_{i}\right)$: Define the bivariate function $g\left(x_{1}, x_{2}\right):=f\left(x_{1} \oplus x_{2}\right)$
Homomorphically evaluate $c \leftarrow \operatorname{Eval}\left(p k_{1}, p k_{2}, c t_{1}, c t_{2}, g\right)$
Let $s k_{i}=s_{i}$ and let C_{i} be th block of C.
Output round $\left(s_{i}^{\top} C_{i} G^{-1}(w)+\delta_{i}\right)$
By above guarantee: \quad round $\left(s_{1}^{\top} C_{1} G^{-1}(\omega)+\delta_{1}\right)+\operatorname{round}\left(s_{2}^{\top} C_{2} G^{-1}(\omega)+\delta_{2}\right)=\operatorname{round}\left(s_{1}^{\top} C_{1} G^{-1}(\omega)+S_{2}^{\top} C_{2} G^{-1}(\omega)\right)$

$$
\begin{aligned}
& =\operatorname{round}\left(\frac{g}{2} \cdot f(x)+\text { error }\right) \\
& =f(x)
\end{aligned}
$$

Can extend from 2-party HSS to n-party HSS generically by relying on additive homomorphism

