
Back to FHE :

sufficient to choose ✗ such that six ≈ (bi - bi)R

Hint consists of

Vij ← A
, Rig! + Rij - G where Rij. ⇐ {0,13min

(encryption
of Rij under A.)

During evaluation time (when bi and bi are known)
,
use { Vij}ij c- em] and bi - bi' in above procedure to obtain

✗ c- 2g
""

where six -_ (bi - bi)R

Then
,
the expanded ciphertext is

[ = 18 E) ⇒ si = [sits:] /8
×c) ≈ [ ✗ - s:b / six + sic ]

= × . [sit si ] - G

which is a GSW ciphertext with respect to
[si Ist ]

If C is an encryption under p.kz , then expanded ciphertext will be

[ = [ E) ⇒ STE = [sic + six / sic]
← ✗ is chosen so upon six

= (bi - bi) - R

lby including encryptions of bits of R)

More generally , with N public keys pki , - - - , PKN , expanded ciphertext encrypted under pki has the form

1"✗ , - - - ✗i. , C ✗ it , - - - XN
,

,

,

g) ← now i

:
.
[sit - - - Isis ] [ = [sic + six , I - - - / siictsitxi / sic / s.EC + sit ✗ it , I - - - / sÑc+sÑ✗n ]

≈ ✗Isil - - . Isnt ] - G

Application to MPC (in CRS model) :

1) Every party generates a public key pki and encrypts ✗i using pki
It broadcasts Cti to all parties

2) Every party homomorphically computes to get encryption of f (× , , .
. .

,
✗N)

3) Parties decrypt the final ciphertext (s)
↳ Requires combining the secret keys - would leak inputs it done naively !



Observation : Let [ c- Ign
" " N"

be final ciphertext. Goal is to compute

[sit - - - 15in ] - C
^

where
party i knows Si and I

=
each party computes one term

SEE↳
[sit - - - Isi ] - f ) = sic ,

t - - - + sÑ In
-

E E 2qFNⁿ (ith block of E)

To decrypt in the MPC setting , each party simply decrypts
"

locally
" and publishes their

" share" of the output

To reconstruct output , simply sum all of the shares together

To
prove simulation security

for MPC protocol , parties add additional
"

smudging
"

noise to prevent partial
decryption from leaking information

.

CI-in-E.gg : In secret sharing scheme

• S
,

•

• sz
"

shares
" of s

secret
• S3

•
54

t - out- of - n secret sharing : any
subset of t shares can be used to reconstruct the secret s

Security : Any subset with fewer than t- shares reveals ng information about the secrets

Namely , there exists a simulator 8 such that for all sets T ≤ In] and all messages s
:

{ (si ) it -1 :(Si, _ .- , Sn) ← share (1? 17s) I { S(1? 1? 1st
,
-1) }

Constructing n - out- of - n secret sharing :

share 117,1
"

,
s) : To share a message S E {0,13°

, sample S
, , .

. .

,
Sn- i
£ {0,13£

"

and set Sn ← s
,
⊕ - - - ⊕ Sn- i ⊕ S

Reconstruct (s
, , . . ., Sn) : Output S

,
⊕ -

-
- ④ Sn

Security is just one -time pad security.

✗
will require that p

> n

constructing t-out
- of - n secret sharing (Shamir secret sharing)

share1171? t
,
s) : To share a message s C- Ip (p is prime so Ip is a field)

, sample a random polynomial 1- c- 2pA] of

degree t - l where tho) = s . In other words
, sample fi , . . - , ft -1

⇐ Ip and let

ffx) = s + f. ✗ + - - - t f←, ✗
t- l

Output shares Si ← (i. flit) for i c- En]

Reconstruct / {si }itT) : Given at least t shares Li
,
Zi ) for if T

, interpolate the unique polynomial of degree t - l such
that flit = zi

. Output flo) .

Secu| : Follows from the fact that it takes t points to define a polynomial of degree t- 1 .



When all of the shares provided to the Reconstruct algorithm are valid
,
then reconstruction is just polynomial

interpolation (can also view as Reed-Solomon decoding - as an erasure code).

Homomorphic secret sharing (with additive reconstruction)

×, -4 GE : if X
, , Xzixz are secret shares of ✗ (i.e.

,
hide ×)

,
then

-4+-12++3 = ffx)
✗→

Xz £-7 tz

✗3¥ +3
← Non-interactive evaluation procedure !

We will see some useful applications of this primitive soon .

Multi- key FHE ⇒ 2- party HSS

Sample key -pairs (pki.sk , ) and (pka , skit
✗ c- " ""→

Sample ×
, ,
×,
I go.ge where × ,

④ ×. = × [
P"" P

"
" "
"21ˢᵗ '

} shane,
compute Ct

,
← Encrypt Cpk , , XD - pki , pkz , Ct, , Ctr , skz

Ct, ← Encrypt Cpkz , ✗2)

Homomorphic computation on shares = homomorphic evaluation

↳

Remaining question
: obtain additive secret shares of ffx)

Ct : after homomorphic computation
: [si / SE ] - C ≈ 5- (x) - [sits:] . G

if ( = [÷]
,

then sic , + sicz = flx) - [si / si ] . G
-

At&t a secret share

(but d- a vector)

to obtain a scalar
,
observe that last component of secret key is 1

.

Let w= [0,0, - - - , 0 , % ]?

Then [si /si ] CG
_'

(w) ≈ flx) . [sit si ] - G- G-Kw) = § - flx)

⇒ SIGG
-Yw) + sECzG-Yw) = G- ffx) + e for some small error e

↓
recover ftx) by rounding (check if value. closer to 0 or

£?

Reconstruction is still not linear
. ..

Ibsen : suppose t , + tz = ¥ . ftx) t e (mod g) where t
, ,
-12 uniform over 2g and e is small

( = 1- 04%)Then round Lt
,
+ tz) = round (ti) + round(t) with high probability

possible error] rounding and addition commute with high probability (for the case of two shares)
regions ✓

;
[ Mmmmm]

; • t, Suppose f-G) = 0
.
Then

9- - round -10 ; round to - 0 round (ti) t round Ctz) = 0 if t, and tz are on the same side as rounding boundary
I '

°

tz•*2
I
,

* interval of size 214+1

i that contains tz (so -4 + tz = e)
Conniving 2kt "

/q:
error occurs only if -4 and ta land on different sides of rounding boundary : prob.



(technically , this is smaller since only half of each interval can contribute to a rounding
error - based on the sign of e)

Thus if sic, G-
' (w) and SIGG

_ '(w) are individually uniform over 2g and q sufficiently large (q
~ In log g)

"" )
round ( sic, G-

' (w) + SIGG"(w)) = round /sic, G-
' (w)) + round (s:C, G-

'
Cw))

"

round / 1- • fix) + e)

÷
But

. . . sic, G-
'

(w) may not be uniform . So cannot apply above analysis.

Solution: Re- randomize using a secret share of 0
.

Namely, sample r # Iq and give r to 1 party and - r to the other :

A now computes sic , G-
'
(w) + r I

g.
still a secret share of Éf.*) + e

F≥ now €0mpates SEC, G- " (w) - r
←
r is independent of Si , Sa , C

2- party HSS from multi-key FHE :

c- {
0,1¥

Share (17.x) : sample ers ← Setup (17:)

lpki.sk;) ← Key Gen Ers] for c- c- { 1,2}

✗
,

I { 0,13L
,
✗ <
← ✗ ⊕ ✗ i

ct;
← Encrypt (pki , ✗ i )

8.⇐ Iq ,
Sz ← -8

,

Output shares

2-
,
= t.pk, , pkz , Ct , , ctz, ski , 8,7

2-
<

= (pk , , pkz ,
Cti

,
ctz

,
skz

,
82)

Eval (f
,
Z ;) : Define the bivariate function g (x , , Xz)

: = ffx, ⊕ ✗a.)

Homomorphically evaluate E. ← Eval /pk, , pkz , ct, , eh, g)
Let ski = s ; and let Ci be ith block of C.

Output round /sic,G-
' Cw) + Si)

By above guarantee: round (sic, G-
' (w) + f.) + round (SEE G-

'
(w) +82) = round (sic , G-Kw) + SÉCZG-4W))

= round (I - ftx) + error)

= f- (x)

can extend from 2- party HSS to n - party Hiss generically by relying on additive homomorphism


