Private information retrieval (PIR): basic building block for prisacy-preserving protocols
client (i) \qquad

\downarrow
$d i$

Requirements: client barns the desmid database record di
server does not learn anything (even if server is malicious!)
\mapsto we do not require privacy for server's database (not OT)
Trivial PIR: download the full database
Goal: Minimise communication from server to dient
Trivial PIR: $O(N)$ communication

Two-server setting: assume database is replicated across two servers (that do not collude)

$$
S_{1}\left(d_{1}, \ldots, d_{N}\right) \quad S_{2}\left(d_{1}, \ldots, d_{N}\right)
$$

$\left(f_{1}, f_{2}\right) \leftarrow$ DPF.Share $(1 \lambda, i)$

$$
d_{1} \leftarrow y_{1} \oplus y_{2}
$$

Query size: $O(\log N) \cdot$ poly (λ)
Response size: $2 \cdot\left|d_{i}\right|=O\left(\left|d_{i}\right|\right)$

Limitation: sevver-side work is linear in database size (possible to amortise with preprocessing)

In multi-server setting, we can also obtain information-theoretic constructions with $O(N)$ communication
\rightarrow Question closely related to locally-decolable codes

Single-server setting: database is hosted on a single server

$$
\begin{aligned}
& \text { server }\left(d_{1}, \ldots, d_{N}\right) \\
& c t\left(\begin{array}{c}
c t^{\prime} \leftarrow \operatorname{FHE} E \text { Evan }\left(f_{d_{1}, \ldots, d N}, c t\right) \\
{\underset{c t}{\prime}}_{\prime} \quad f_{d_{1}, \ldots, d_{N}}(i)=\sum_{j \in[N]} d_{j} \cdot 1\{i=j]
\end{array}\right. \\
& \text { client (i) } \\
& \text { (pk, sk) } \leftarrow \text { FHE. Setup (} 1^{\lambda} \text {) } \\
& \text { ct } \leftarrow \text { FHE.Encrypt }(i)
\end{aligned}
$$

Query size: $O(\log N) \cdot$ poly (λ)
Response size: $\left|d_{i}\right|$ poly $(\lambda, \log N)$
\simeq Can remove $\log N$ dependence with bootstrapping

FHE-baved approach described above is not likely to have good concrete efficiency
\rightarrow Requires $O(\log N)$ multiplications for each database item
\rightarrow Typically $N \sim 2^{20}$ (or 2^{30}) so mutipitcative depth is high \rightarrow poor concrete efficiency

Conceretly-efficient PIR schemes follow Kushilesitz-Ostrosiky framework:

in the clear

Query + response size $\sim O(\sqrt{N}) \longrightarrow$ Open question: Further reduce compute via database \longrightarrow Can decrease either by recursinire compaction or by homomopphc multipicication \rightarrow basis of concretely-efficient constructions encoding? \rightarrow Server computation is still linear
Improving the concrete efficiency of lattice-based schemes \quad (Recant work shows how to get to \sqrt{N})
Standard Regev encryption: $p k=A=\left[\begin{array}{c}\bar{A} \\ \bar{S}^{\top} \bar{A}+e^{\top}\end{array}\right] \in \mathbb{Z}_{q}^{n \times m}$ large zublic bey \sim typically $O\left(n^{2} \log _{q}\right)-$ quadratic in lattice $\quad \begin{array}{r}\text { dimension }\end{array}$

$$
\begin{aligned}
& s k=s^{T}=\left[-s^{\top} \mid 1\right] \in \mathbb{Z}_{q}^{n} \\
& c t=A r+\left[\begin{array}{c}
0^{n-1} \\
\mu \cdot\left[\frac{q}{p}\right\rangle
\end{array}\right] \in \mathbb{Z}_{q}^{n}
\end{aligned}
$$

need a vector of dimension n to encrypt a single scalar
(high over teed)

To improve efficiency, we can instead work over polynomial rings
$\mathbb{Z}[x]$: ring of polynomials with integer coefficients
$\mathbb{Z}[x] /\left(x^{2^{2}}+1\right)$: ring of polynomial modub $x^{2^{2}}+1 \quad$ (cycbtomic polynomial)
In particular $x^{2^{2}}=-1\left(\bmod x^{2^{2}}+1\right)$
We can view LWE as working over the ring $R=\mathbb{Z}$. Now, we consider the ring $R=\mathbb{Z}[x] /\left(x^{2}+1\right)$.
RLWE assumption: Sample $a \stackrel{R}{\leftarrow} R_{q} \quad\left(R_{q}=R / q R=\mathbb{Z}_{q}[x] /\left(x^{\left.Q^{2}+1\right)}\right.\right.$

$$
\begin{aligned}
& s \leftarrow R_{q} \\
& e \leftarrow x \\
& u \leftarrow R_{q}
\end{aligned} \quad \text { (distribution over } R_{q} \text { where polynomials have small coefficients) }
$$

The RLWE assumption says that following distributions are computationally indistinguishable:

$$
(a, s a+e) \text { and }(a, u)
$$

We can view ring multiplication as a matrix-vector multiplications

$$
\begin{aligned}
& a=2 x^{3}+x^{2}-3 x+1 \\
& s=x^{3}-2 x+2 \\
& R=\mathbb{Z}[x] /\left(x^{4}+1\right)
\end{aligned} \longrightarrow \quad \begin{gathered}
\text { first row is union } \\
{\left[\begin{array}{cccc}
1 & -3 & 1 & 2 \\
-2 & 1 & -3 & 1 \\
-1 & -2 & 1 & -3 \\
3 & -1 & -2 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 \\
6 \\
-1 \\
9
\end{array}\right] \begin{array}{l}
x^{3} \\
x^{2} \\
x \\
1
\end{array}}
\end{gathered}
$$

Regev encryption over rings:

$$
\begin{aligned}
p k=(a, b) \text { where } & a \leftrightarrow R_{q} \\
& s \leftrightarrow R_{q} \rightarrow b=s a+e \\
& e \leftarrow x
\end{aligned}
$$

$$
\begin{aligned}
& s k=s \\
& c t=\left(a r, b r+\mu \cdot\left[\begin{array}{l}
q \\
p \\
\hline
\end{array}\right) \text { where } r \leftarrow x \text { and } \mu \in R_{q}\right.
\end{aligned}
$$

Advantages over vanilla Regev: Shorter public keys, faster key-generation
Better ciphertext rate: need $2 R_{q}$ elements to encrypt $1 R_{p}$ element
Drawback: More structured assumption (ring multiplication is commutative!)
\rightarrow Does not have reductions to worst case lattice problems

Most constructions based on standard lattices can be translated directly to the ring setting (with better concrete efficiency)

Exploiting structure in the ring setting:
Suppose we work over the ring $R=\mathbb{Z}[x] /\left(x^{2^{d}}+1\right)$ and suppose we chose the plaintert modules $p=1\left(\bmod 2^{d+1}\right)$.
Then, we can show that the polynomial $x^{2}+1$ factors mod p as

$$
x^{2^{\alpha}}+1=\prod_{i \in\left[2^{d}\right]}\left(x-\alpha_{i}\right) \quad(\bmod p)
$$

for $\alpha_{1}, \ldots, \alpha_{2} d \in \mathbb{Z}_{p}$. Then, by Chinese Remainder Theorem (CRT):

$$
\begin{aligned}
& R / P R=\mathbb{Z}_{p}[x] /\left(x^{\left.2^{d}+1\right)}\right. \cong \mathbb{Z}_{p}[x] /\left(x-\alpha_{1}\right) \times \cdots \times \mathbb{Z}_{p}[x] /\left(x-\alpha_{2} \alpha\right) \\
& \cong \mathbb{Z}_{p}^{2^{d}} \\
&, d
\end{aligned}
$$

Plaintext space is isomorphic to $\mathbb{Z}_{p}^{2^{d}}$
\rightarrow Addition in R_{p} corresponds to component-wise addition in $\mathbb{Z}_{p}^{Z^{d}}$
\longrightarrow Multiplication in R_{p} corresponds to componunt-wive multiplication in $\mathbb{Z}_{p}^{2^{d}}$
SIMD (single instruction multiple data) support for homamerphic evaluation

We can encrypt a vector of 2^{d} integers
\mapsto Each homomorphic operation simultaneously computes on all 2^{d} elements

Reducing ciphertext size via modulus switching:
When we use FHE to evaluate a circuit C, parameters have to be chosen so that accumulated error is smaller then $8 / 2 p$.
Useful technique: Perform all computations with respect to a modulus q and then rescale final ciphertert to a smaller modulus $q^{\prime}<q$:

$$
s^{\top} c=\left\lceil q_{p}^{q} \cdot \mu\right\rceil+e(\bmod q)
$$

Replace $c \mapsto\left[\frac{q^{\prime}}{q} \cdot c\right] \quad\left(i n t e r p e t ~ c^{\prime}\right.$ as element of $\mathbb{Z}_{q^{\prime}}$)

To analyze this, we consider an expression over the rationals:

$$
s^{\top} c=\left\lfloor\frac{q}{p} \cdot \mu\right\rceil+e+k q \quad \text { for some integer } q
$$

We can write

$$
c^{\prime}=\left\lfloor\frac{q^{\prime}}{q} \cdot c\right\rceil=\frac{q^{\prime}}{q} \cdot c+e^{\prime} \text { where }\|e\|<\frac{1}{2} \text { (over the rationals) }
$$

Then,

$$
\begin{aligned}
s^{\top} c^{\prime} & =\frac{q^{\prime}}{q} \cdot s^{\top} c+s^{\top} e^{\prime} \\
& =\frac{q^{\prime}}{q}\left[\left(\frac{q}{p} \cdot \mu+e^{\prime \prime}\right)+e+k q\right]+s^{\top} e^{\prime}
\end{aligned}
$$

$=\frac{q^{\prime}}{p} \mu+\frac{q^{\prime}}{q}\left(e^{\prime \prime}+e\right)+k q^{\prime}+s^{\top} e^{\prime}$
$=\frac{q^{\prime}}{\beta} \mu+\underbrace{\frac{q^{\prime}}{q}\left(e^{\prime \prime}+e\right)+s^{\top} e^{\prime}}\left(\bmod q^{\prime}\right)$
require that thene (i.e, sampled frum error distribution)
comporents are smaler then $\frac{g}{2 p}$. [obsevve origionl evorer e is satad doun by g^{\prime} / g]

Take-away: After pestorning operations, can rescate the ciplentexts to smaller modulus q^{\prime} (redives communication concretaly)

