We will now show how to construct digital signatures from SIS in the random oracle model.

We first introduce the inhomogeneous SIS (ISIS) problem.

<u>Inhomogeneous</u> <u>SIS</u>: The inhomogeneous SIS problem is defined with respect to lattice parameters n, m, q and a norm bound p. The ISIS, m, q, problem says that for $A \in \mathbb{Z}_q^{n\times m}$, $u \in \mathbb{Z}_q^2$, no efficient adversary can find a non-zero vector $X \in \mathbb{Z}^m$ where $A \times = U \in \mathbb{Z}_q^2$ and $\|X\| \leq p$

Corresponds to finding a short vector in the lattice coset $L_{u}^{\perp}(A) := C + L^{\perp}(A)$ where $C \in \mathbb{Z}^{m}$ is any solution where A = u and $L^{\perp}(A) = \{ x \in \mathbb{Z}^{m} : A x = 0 \pmod{g} \}$

For many choices of porometers, hardness of SIS => hardness of inhomogeneous SIS (HW exercise)

For convenience, from this point forward, we will use the los - norm for vectors. Recall that //v//os < //v//z < Vn //v//os if vector is short in los norm, it is also short in los norm,

The SIS and ISIS problems can be leveraged to construct <u>lattice trapoloors</u>. We define the syntax here: - Trap Gen $(n,m,q,p) \rightarrow (A, td_A)$: On input the lattice parameters n, m, q, the trapoloor-generation algorithm outputs a matrix $A \in \mathbb{Z}_q^{n\times m}$ and a trapoloor td_A - $f_A(x) \rightarrow y$: On input $x \in \mathbb{Z}_q^m$, computes $y = Ax \in \mathbb{Z}_q^n$

- $f_A^{-1}(td_A, y) \rightarrow \chi$: On input the trapology td_A and an element $y \in \mathbb{Z}_g^2$, the inversion algorithm outputs a value $\|\chi\| \leq \beta$

Moreover, for a suitable choice of n, m, g, B, these algorithms satisfy the following properties:

- For all $y \in \mathbb{Z}_{g}^{2}$, $f_{A}^{-1}(td_{A}, y)$ outputs $x \in \mathbb{Z}_{g}^{2}$ such that $\|x\| \leq p$ and Ax = y

The matrix A subjut by TropGen is stutistically close to uniform over $\mathbb{Z}_q^{n\times m}$

Lattice trapdoors have received significant amount of study and are will not have time to study it extensively. Here, we will obescribe the high-level idea behind a very useful and versatile trapoloor known as a "gadget" trapdoor

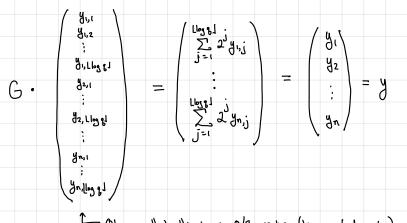
First, we define the "gadget" matrix (there are actually many possible gadget matrices - here, we are a common one sometimes called the "powers-of-twos" matrix):

Each row of G consists of the powers of two (up to 2^{llog g]}). Thus, $G \in \mathbb{Z}_{g}^{n \times n \lfloor \log g \rfloor}$. Oftentimes, we will just write $G \in \mathbb{Z}_{g}^{n \times m}$ where $m \ge n \lfloor \log g \rfloor$. Note that we can always pad G with all-zero columns to obtain the desired dimension.

Observation: SIS is easy with respect to G:

$$G \cdot \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = 0 \in \mathbb{Z}_{q}^{n} \implies norm of this vector is 2$$

Inhomogenous SIS is also easy with respect to G: take any target vector $y \in \mathbb{Z}_{g}^{n}$. Let $y_{i,l,ly_{2}l}, ..., y_{i,l}$ be the binary decomposition of y_{i} (the ith component of y). Then,



C Observe that this is a 0/2 vector (binary valued vector), so the los-norm is exactly 2

We will denote this "bit-decomposition" operation by the function $G^{-1}: \mathbb{Z}_{q}^{n} \longrightarrow \{0,1\}^{n}$ I important : G-1 is not a matrix (even though G is)!

Then, for all y & Zg, G.G. (y) = y and ||G. (y)|| = 1. Thus, both SIS and inhomogeneous SIS are easy with respect to the matrix G.

We now have a motrix with a "public" trapoloor. To construct a secret trapoloor function (useful for cryptographic applications), we will "hide" the gadget matrix in the matrix A, and the tropoloor will be a "short" matrix (i.e., matrix with small entries) that recovers the gadget.

Nore precisely, a gadget trappoor for a matrix
$$A \in \mathbb{Z}_{6}^{n\times k}$$
 is a short matrix $R \in \mathbb{Z}_{6}^{k\times n}$ such that
 $A \cdot R = G \in \mathbb{Z}_{6}^{n\times m}$
We say that R is "short" if all values are small. [we will write IIRII to refer to the largest value in R].
Suppose use knows $R \in \mathbb{Z}_{6}^{n\times m}$ such that $AR = G$. We can then obtive the inversion algorithm as follows:
 $-\int_{A}^{-1} (td_{A} = R, y \in \mathbb{Z}_{6}^{n})$: Output $x = R \cdot G^{-1}(y)$. Important note: When using trappoor functions in a setting where the
adversery can see trappoor evaluations, we actually need to
 $A \cdot R = AR \cdot G^{-1}(y) = G \cdot G^{-1}(y) = y$ so x is indeed a valid pre-image
 $Q \cdot \|x\| = \|R \cdot G^{-1}(y)\| \leq m \cdot \|R\| \|G^{-1}(y)\| = m \cdot \|R\|$
Thus, if $\|R\|$ is small, then $\|x\|$ is also small (think of R as a large polynomial in n).
(Recall we are using low norm now)

Remaining question: How do we generate A together with a traphoor (and so that A is statistically close to uniform)? Many techniques to do so; we will look at one approach using the LHL: Sample A & Zg and R & fo, 13mm.

Set
$$A = [\overline{A} | \overline{A}\overline{R} + G] \in \mathbb{Z}_{g}^{n \times 2m}$$

Output $A \in \mathbb{Z}_{g}^{n \times 2m}$, $td_{A} = R = [\overline{I}] \in \mathbb{Z}_{g}^{2m \times m}$

First, we have by construction that $AR = -\overline{AR} + \overline{AR} + \overline{G} = \overline{G}$, and moreover ||R|| = 1. It suffices to argue that A is statistically close to uniform (without the trapdoor R). This boils down to showing that A.R.+ G is statistically close to uniform given A. We appeal to the LHL:

later.)

I. From the previous lecture, the function $f_A(x) = A x$ is pairwise independent

2. Thus, by the LHL, if $m \ge 3 \operatorname{nlog} q$, then Ar is statistically close to uniform in Zq when $r \stackrel{\mathfrak{R}}{\leftarrow} 20,13^m$.

3. Claim now follows by a hybrid argument (applied to each column of R)

Thus, given A, the matrix AR is still statistically close to uniform. Corresponding, A is statistically close to uniform.

Digital signatures from lattrice trapoloops: We can use lattrice trapoloops to obtain a digital signature scheme in the random oracle model (this is essentially an analog of RSA signatures): - KeyGen(1²): (A, tol_A) ← TrapGen (n, m, g, g) [lattrice parameters n, m, g, g are based on security parameter 2] Output vk = A and sk = tol_A - Sign (sk, m): Output σ ← f_A²(tol_A, H(m)). Here, H: {0,13^{*} → Z_gⁿ is modeled as a random oracle. - Verify (vk, m, σ): Check that || σ1| ≤ g and that f_A(σ) = H(m).

- Consider instantiation with gadget trapploors: - Verification key: $A \in \mathbb{Z}_{q}^{n}$ $signing key: <math>R \in fo, j^{men}$ such that AR = G - To forge a signature on m, adversary has to find v such that Av = H(m) - Signature on m: $y \leftarrow H(m) \in \mathbb{Z}_{q}^{n}$ - Matrix A is statistically close to uniform and v is output $\sigma = v = [R \cdot G^{-1}(y)]$ - Verification: check that $A \cdot v = ARG^{-1}(y) = G \cdot G^{-1}(y) = y$ and v is short - Verification short - Verification is short - Verification is check that $A \cdot v = ARG^{-1}(y) = G \cdot G^{-1}(y) = y$ - Problem: Signing queries leak information about R. - Adversary can compute H(m) = y and $G^{-1}(y)$, - Signing becomes a linear function!
 - Early approach of Goldreich-Goldwasser-Haleri^K In the context of the security prost, simulator needs was insecure - explicit key-recovery attack by Nguyan, Ryer a way to answer signing queries (without a trapdoor for A).

Requirement: Rondomize the signing algorithm to hide tropoloor R

Definition. A function $f: X \rightarrow Y$ is a preimage-sampleable tropolour function if there exists some efficiently-sampleable distribution. Done X and a trapdoor inversion algorithm SamplePre with the following properties: trapdoor for preimage sampling $\begin{cases} X \leftarrow D \\ Y \leftarrow f(X) \end{cases} \begin{pmatrix} X, Y \end{pmatrix} \end{cases} \qquad \begin{cases} Y \overset{R}{\leftarrow} Y \\ X \leftarrow SamplePre(td, x) \end{cases}$ "forward sampling" "backhard sampling" to usays to do the same thing Thereaser, given f and $Y \overset{R}{\leftarrow} Y$, no efficient adversary can find X such that f(X) = Y. One approach in security post Definition requires (1) for $x \leftarrow D$, f(X) is uniform over Y(2) for a random $y \overset{R}{\leftarrow} Y$, inversion algorithm samples a preimage from D conditioned on f(X) = y.

- Observe that a tropoloor permutation is a <u>daterministic</u> preimage sampleable tropoloor function: Sample Pre returns the Unique trapoloor
- If we use a preimage sampleable trapdoor function in digital signature construction, then we can argue security (similar to arguing security of RSA-FDH in random oracle model).