
Prootsketh: oyÉarf_B challenger
←Ée

- will
program y* to * query to H

assume A queriesÉÉA ( it is a random index)

feetH on m before
if this is query

it :
y← y

't

making signing else
,
✗ ←D , y ← ftx), add Mt
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If A makes Q random oracle queries, B succeeds with probability YQ - SigAdv [A].
- All random oracle queries are properly distributed

( since forward sampling and reverse sampling are statistically indistinguishable)
- All signature queries are properly

distributed (as long as guess is correct)
- Guess is correct with prob. YQ
- If

guess
is correct and A succeeds

,
then f- (Ot) = HIM't) = y

*
so B succeeds .

Constructing preimage sampleable trapdoor functions from SIS .

fa (X ) : = Ax lmodq) ( A c- 2g
"

? ✗ c- Rgm ]

Goat: given a target vector y
c- 2g , sample ✗ c- 2m such that Ax =y

Recall the SIS lattice

Lt (A) = { ✗ c- 2m : Ax = o (mod g) }
For a vector u c- 2g , recall that the coset Lie (A) is

} Equivalent
formulation of objective :

Li (A) = c + £ (A) = { ✗ C- Im : Ax = u } sample from some
"

nice
" distribution

←
CE Ign is an arbitrary vector where Ac

= U over Lie (A)

Challenge : Defining a distribution over LILA) that is conducive for preimage sampling.
-

Sampling preimages (given a trapdoor) must be efficient
-

Samples must not teak trapdoor ( can be simulated without knowledge of trapdoor)

The distribution is typically a discrete Gaussian distribution - shares
many analytical properties with continuous Gaussians

Why discrete Gaussian distribution?
Definition For a parameter

s > 0
,
we define the Gaussian function on TR

"

with widths as follows : Nicely behaved :

gslx) : = exp 1-Till✗11%2) -

Rotationally invariant over TR
"

:

gs.ch/):--exp(--aHx-clf/s2) Gaussian centered at CETR
"

gs (E) = Tlgslxi)ic-G)

(density depends only on the)Discrete Gaussian centered at C: norm 11×11 of input

(x) = %É
)
= ÷Y

-

sum of Gaussian is GaussianDL.sc (X) ✗ }DL.s.cootherwi
% %c(×) (Gaussian convolution lemma)

Proportional ,
I

✗ c- y

✗c-£
[ normalization Algorithms leverage these propertiesparameter



Visually (2D setting) for 22 :

Here
, we sketch one approach for discrete Gaussian sampling based on gadget trapdoors + perturbation [MPH

,
GPV08

, Pei 10]

We start by recalling the Gram- Schmidt orthogonalization method from linear algebra
- Let bi

, . .
.

,
bn C- TRD be a collection of vectors with span (b , , . . . , bn ) = ✓ [bi , .. . , bn need not be linearly independent]

-

The Gram- Schmidt orthogonalization process outputs Ñ
,
. . .

,
tin C- TR

"

where span (bi , . . . ,Ñn ) = V and Ñitbj = 0 for all it j
Alghm: bi ← b

,

for each i = 2
,
. . .

,
n
:

~ ,•b2
bi - bi - E - Ii ÷=ñj< i

-

projection
of / In Euclidean space

:

bi onto bj 1 b
,
= Hbi";¥bb, = projection of

bz onto b, }
Not difficult to show that Ñ, , . . . , tin are pairwise orthogonal

- Let B~= [Ñ
,
I - - - lion ] be the Gram- Schmidt basis

.

Important : B and B span the same vector space over -112 , but do not necessarily generate the same lattice

(Ñ; is not necessarily an integer linear combination of b
, , . . . ,

bm)

simple counter - example : b
,
=/}] bz = [ I]

I. =L}] Iz =L :] observe that 1%4 LIB)
-

The norm of the Gram- Schmidt vectors provides a bound on the minimum distance of a lattice :

1
, (LIB)) 7 min 11 bill

ictn]

Pr=ot. Take any lattice point B.✗ =/ 0 where ✗ c- 2? Let K be largest index where ✗1<=10. Consider now the product

(Bx)TÑk = I Xib? ÑK = Xkbiibk since Ik is orthogonal to bi
, . . - , bky by construction

isk

=

Xk 115<112 since BTKÑK = 11151<112 also by construction

By Cauchy
- Schwarz ( lust c- Hull - Hull)

,
we now have

1113×112-111%1127 1113×1551,1--1×1<1 - 1151<11
"

7 1151<112 since Xk C- 2 and ✗ k =/ 0

% min 111%11 .
i c-Cn]


