
Tieoremlcoentrypeikertvaikuntanathan) . There is an efficient algorithm that takes a basis B of a lattice I =L(B)
,
a coset

CTL and a Gaussian width parameter S 7111511 ' w(tFgn) and outputs a sample

[whose distribution is statistically dose to DIE
11,311 = max 115.11

,
where { BY 3 is the

Y i
Gram- Schmidt basis

distribution is independent of B !

Approach for preimage sampling
: need to show that for ✗ ← Dam,s ,

forward sampling : choose ✗ ← Days and output (x, Arx) (X
,
Arx) É (x

,
a) where u # zq^

backward sampling : choose y
F- 2J , compute any solution ZE Zqm where Az=y

sample ✓ ← Diya),s,-z
and output ✓ + 2- ← need to show that distribution of ✓ + Z

is statistically close to Dam
,
sF-

Outputs discrete Gaussian centered at - 2- satisfying Av = 0 .

To reason about this precisely, we need to introduce the notion of the
'

simoothing parameter
"

of a lattice :
-

Intuitively : minimum amount of Gaussian blur needed to smooth out the discrete structure of a lattice

e.g., minimum
width s > 0 such that every coset c + L has the same Gaussian mass : Gaussian distribution over

for all CETR
"

: gs,c(L) C- [ 1- negkn) , n ] -

gs (L)
£ is statistically close to

whenever 577 (L) [
gs (g) = I gsfx) ( Gaussian. distribution over

✗EL←
smoothing parameter of L ✓ any coset

[Refer to [MR07 ] for formal definition] typically
↳

implies gs (Ctf) = I 91×1 = £9s (Ctg)
c. +£

-

Smoothing parameter can be bounded as follows : parameterized by E
,
here

7 (1) £ In (L) -

w (Ign) for simplicity , we set 7 = negl (n)
=
9s , - c (d) Éps(L)

← smallest l such that £ has a basis where all vectors have norm at most

"£ &"

-

Visually (for 2D lattices) :

Figures show a Gaussian distribution centered at each lattice point
↳ Observe that as the width increases, distribution smoothies out and eventually looks uniform

↳ When the with is larger than the smoothing parameter , distribution over £ and Ctf (i.e. any translation of 2)

is statistically indistinguishable

Let us now consider the distribution of AX when AE 2g
"

and ✗ ← Dam
, s where s > 2124AM and m > 3n.bg q

We claim this is uniform over 2q^ .

Proof. Recall that L'- (A) = { ✓ c- Zjm : Av = of c- Igm
we claim that X (mod d-(A)) is statistically close to uniform over 2m/d- (A)

f-
since s > 21L

'-
(A1)

Take any coset Ct Lt (A) . Since ✗ ← Dam
,
s ,

Pr [✗ c- ethical] ✗ 96+21-1^-1) I ps(L'- (A1)



This holds for every coset ct It (A)
.

Thus
,
✗ (mod LHA)) É Uniform ( If/Lt (A)) (✗ ↳ Axis group homomorphism]Next

, quotient group Igm /d-(A) ±q with isomorphism given by ✗ + d- (A) ↳ Ax £ (A) is the kernel of A
⇒ Ax is statistically close to

/
uniform over Ingenio
→ Technically Zqm /Lt(A) É range (✗ ↳ Ax) . When m > 3N log q , with prob. tneglln,• • 08 • o o

Visually : µ
.
- j•
"

?É÷^ the LHL says that
• • 0

• • § • • • { (Aix) : AE 2g
"

? ✗
I { o.it

"} É { (A.at?A-2j7uEZq
" }of • oÉ• • • • ✓

with statistical distance•÷
. • • •

So range (✗ ↳ AX) = 2g
"

with 1-neglln) probability E=tfF-/q3n < g-
n

Suppose these vectors are a basis for LHA) . For each ✗ E Lt (A)
,
we have Ax = 0 (mod g).

Elements in green are elements of 22/L'- (A) . When we sample ✗ ← DZZ, § , with s > 7. ( silat)
,
✗ (mod Ltcm)

is uniform random over 7<2/2'- (A)
.

Each element of 22/21 (A) is associated with a value AX.

Thus
,
forward sampling satisfies (x , Ax) É (X

,
a) when ✗ ←Dzm

,
s
,
A F- 2g

"'m

,
u←R 2g

"

.

Now
,
we need to show that backward sampling (X

, y)
where y

⇐ 2cg , ✗ ← ✓ 1- 2- where ✓ ← DHA)
,
s
,
- z and Az =y

yields the correct distribution
.

Suppose we sample IX.g) using the forward sampling procedure . Then
, y

is uniform over Éq^ so consider distribution of ✗

conditioned on y .
This is the distribution of ✗←Dam

,
s given A✗=y. The support of this distribution is zt L'

- (A)

where 2- C- Igf is any solution satisfying AZ =

y . Thus
,
we can write

☐ (2) = HE =gsizti-HT.gs(Z +LHA)) g.→ (stay
= DHA),s, - z

(Ñ- Z)

probability of sampling
any v

'
such that Av=y

(since Az = g)
If we write ✗ = 2- + V

,
then ✓ = X- Z

.
The distribution of v is then precisely Dgf(A) , s , - 2- :

Ddi) = Dx (Ftz) =D£(A)
,
s
,

-zÑ)

T [ since v=X- Z
,

event ✓=J corresponds to
sampling valve i sampling I = Ftz
from distribution of ✓

+

It suffices now to show how to sample from Dg ,s, , given a sufficiently -good
"

basis B for L =L (B) . [ s > 11511 - wflogn)]

Nappro_ach : sample a continuous Gaussian over TR
"

and " round
"

to the nearest lattice point
↳ This yields the

"

rounded Gaussian distribution
"

which is statistically far from the discrete Gaussian (even over 2) !

To see this
, suppose we want to sample from Dz,s by sampling a continuous Gaussian with parameter s and rounding.

Consider probability mass assigned to 0 :
Gauss error function

- Rounded Gaussian :
y
← Gaussian (s) rounds to 0 if y

c- f- Ya
,
Ya )

. ← erflz)=¥ffétdt
Pr / y c- 1-%

,
%)]=¥

"

gs (g) dy = -1% -"Y%zdy =¥- f.
FY"

e-Edt = erf / ✓%)
e

p
-Yz 0 ← Taylor expansion for 2- < 1 :

T T
normalization parameter by symmetry substituting erf (z) = }É( 2- - ☐ (2-3))

co

f-as 9s (g) dy = s of gs t = Fay/s
⇒ for large s , erf zs) = § - ☐ (%)



-

Discrete Gaussian : since the Fourier transform of gstx) is Js (y) = s.gg (g) , we can write by properties of the Fourier transform :

[see optional addendum for proof]
gs (2)

= I fstx) = I s.gl/sly)--Eyezse-tsY2--s(1-neglla))✗ C- I YEZ
whenever s = WH ) [ e-s

'

= e-was" = neglfx)]
⇒

probability of sampling 0 is then negligibly close to %

Statistical distance between discrete Gaussian and a rounded Gaussian is at least IL ( Tss)
.

Even larger in higher dimensions !

For applications that require pre
-image sampling for security , discrete Gaussian sampling is very important. Other distributions may

not be simulatable and vulnerable to attack !

An optional aside .

We will show that Ixez9s(× ) = s -Eyez 9% (g)

We say a function f : TR → ① is absolutely if
•

lftx)/ dx < csto
For an absolutely integrable function f

: TR → ①
, we

define its Fourier transform f^ : TR → ① to be
^

f- (g)=/
•

f(×) e-Ztixy dx1- cs

When f.I are absolutely integrable and f is continuous
,
then we can define the inverse Fourier transform

f- (X) =/
•

§ (g) eating
-is dy

consider the Fourier transform of the Gaussian function 9s (in one dimension) :

Js (g) = I gsfx) e-"" "I d×

= s e-
"SY

"

= g. gyg (y) (see standard textbook of Fourier analysis or use Mathematica )

(In particular, Fourier transform of Gaussian is Gaussian) .

Suppose f : TR→ ① is 2- periodic. Namely , flxty)= ftx) for all ✗ C- TR and y c-
2

.

We define its Fourier series § : 7L → G as

f^(g) = fifa) e-
"' i'Ydx

The Fourier inversion formula allows us to write

Ztixyf-(x) = I fly)e
y c- 2

We now show that for
a⇒ well- behaved f : TR → 1C

,
it holds that

[ ffx) = I Ily)
✗ c-2 YEZ

Define the function (X) = E f(✗ + Z)
.

Since ¢ is 2- periodic :2- C-I

Fly)=£'¢(×) e-Kind dx
I

domain of =L
'

E.ffxtz) e-
"""I

dx

§ is 2 ZEZ

= [ go'f(✗+z) e-
↳i×Jd× can interchange summation + integration if f is

"

well-behaved
"

(see Fubini 's theorem for precise condition)

2- C-I

= [ golf /✗+ z ) e-
"'i'✗+" Y since yz

c- 2 so e-ZTIYZ =L

ZEZ

= LI ffx) e-
"' i'Y dx

= Ily)


