By Fourier inversion, $\quad \sum_{x \in \mathbb{Z}} f(x)=\phi(0)=\sum_{y \in \mathbb{Z}} \hat{\phi}(y)=\sum_{y \in \mathbb{R}} \hat{f}(y)$
Applied to $\rho_{s}(x)$, we have $\sum_{x \in \mathbb{Z}} \rho_{s}(x)=\sum_{y \in \mathbb{Z}} \hat{\rho}_{s}(y)=\sum_{y \in \mathbb{Z}} s \cdot \rho_{y_{s}}(y)=s \sum_{y \in \mathbb{Z}} \rho_{y_{s}}(y)$

Preimage sampling with a gadget trapdoor. Suppose we know R where $A R=G$ (and A is statistically clove to uniform).

Starting point: Sampliy from $D_{Z, s, c}$. Use rejection sampling.

1) Sample $x \leftarrow \mathbb{Z} \cap[c-s \cdot t(n)$, c+s•t(n)]. We will set $t(n)=\omega(\sqrt{\log n})$.
2) Output x w.p. $\rho_{s, c}(x)$. Otherwise reject.

By Gaussian tail bounds, when $s>\omega(\sqrt{\log \lambda})$

$$
\operatorname{Pr}\left[x \leftarrow D_{2, s, c}:|x-c| \geqslant t \cdot s\right] \leqslant 2 e^{-\pi t^{2}}(1-\operatorname{neg} \mid(\lambda))
$$ statistically dore to dicherete Gaussian

Setting $t=\omega(\sqrt{\log \lambda})$, ω. . $\operatorname{treg} \mid(\lambda)$, x will lie in the interval $[c-s \cdot t(n), c+s \cdot t(n)]$.

By construction, rejection sampling algorithm outputs each x w.p. proportional to $\rho_{s, c}(x)$. Thus, this algorithm samples from truncated version of $D_{\mathbb{Z}, s, c}$, which is statistically close to the desired distribution.

Algorithm will terminate with overwhelming probability after $t(n) \cdot \omega(\sqrt{\log n})$ iteration:
$-x \in[c-s, c+s]$ w.p. $2 s+1 / 2 s t+1>2 s / 2 s(t+1)=1 / t+1$ since $s>1 \quad$ By Chernoff bound, algorithm terminates after

- For $x \in[c-s, c+s]$, algorithm outputs it w.p. at least $\rho_{s, c}(c+s)=e^{-\pi}=O(1)$ $t(n) \cdot \omega(\log \lambda)$ iterations w.p. $1-n g l(\lambda)$

To sample from $D_{\mathcal{L}, s, c}$ for an arbitrary $\mathcal{L}=\mathcal{L}(B)$, we proceed as follows:
(indexing will be convenient for analysis)
(a) Compute $c_{i}^{\prime} \leftarrow c_{i}^{\top} \tilde{b}_{i} / \tilde{b}_{i}^{\prime} \tilde{b}_{i} \in \mathbb{R}$ and $s_{i}^{\prime} \leftarrow s /\left\|\tilde{b}_{i}\right\|$
(b) Sample $\boldsymbol{Z}_{i} \leftarrow D_{\mathbf{Z}, s_{i}^{\prime}}, c_{i}^{\prime}$
c) Update $c_{i-1} \leftarrow c_{i}-z_{i} b_{i}$ and $v_{i-1} \leftarrow v_{i}+z_{i} b_{i}$
2. Output v_{0} :

Visually in 2 dimensions:

1) Choose one of these planes (direction along \tilde{b}_{2}) according to discrete Gaussian
2) Sample a discrete Gaussian along \tilde{b}_{1}

Proof idea: Smoothing ensures that distribution over the choice of plane for each dimension only depends on distance from center to the plane. Does not get affected by trandation within the plane.
(See below for formal argument from [GVWO8]
By construction, $v_{0} \in \mathcal{L}(B)$ since $z_{1}, \ldots, z_{n} \in \mathbb{Z}$
We show that above algorithm outputs samples from $D_{1, s, c}$:

Lemma. Let $v=\sum_{i \in a,-]} z_{i} b_{i}$ be output of above algorithm. Then, we can write

$$
v-c=\sum_{i \in[n]}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}
$$

Proof. Let $\pi_{i}: \mathbb{R}^{n} \rightarrow \operatorname{span}\left(b_{1}, \ldots, b_{i}\right)$ be the projection from \mathbb{R}^{n} onto the subspace spanned by b_{1}, \ldots, b_{i}.
We show that $\forall j \in[n]$:

$$
v-v_{j}-\pi_{j}\left(c_{j}\right)=\sum_{\left.i \in j_{j}\right]}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}
$$

For $j=0$, claim is immediate $\left(v=v_{0}, \pi_{0}\left(c_{0}\right)=0\right)$.
Suppose claim holds for $j=k-1$. Then,
components along b_{1}, \ldots, b_{k-1}

$$
v_{0}-v_{k}-\pi_{k}\left(c_{k}\right)=v_{0}-v_{k-1}+z_{k} b_{k}-\left(\pi_{k-1}\left(c_{k}\right)+c_{k}^{\prime} \tilde{b}_{k}\right)
$$

$$
=\left(v_{0}-v_{k-1}\right)+z_{k} b_{k}-\pi_{k-1}\left(c_{k-1}\right)-\pi_{k-1}\left(z_{k} b_{k}\right)-c_{k}^{\prime} \tilde{b}_{k}
$$

$$
\begin{aligned}
& {\left[v_{k}=v_{k-1}-z_{k} b_{k}\right]} \\
& {\left[c_{k}=c_{k-1}+z_{k} b_{k}\right]}
\end{aligned}
$$

$$
=\left(v_{0}-v_{k-1}-\pi_{k-1}\left(c_{k-1}\right)\right)+2_{k}(\underbrace{\left(b_{k}-\pi_{k-1}\left(b_{k}\right)\right.})-c_{k}^{\prime} \tilde{b}_{k}
$$

Claim now holds by considering $j=n: v_{n}=0, c_{n}=c \quad\left(\pi_{n}(c)=c\right.$ since B is a basis for $\left.\mathbb{R}^{n}\right)$.

Lemma. Suppose $S>\|\tilde{B}\| \cdot \omega(\sqrt{\log n})$. For any $v \in \mathcal{L}(B)=\sum_{i \in a_{3}} z_{i} b_{i}$, algorithm outputs v with probability

$$
\rho_{s, c}(v) \prod_{i \in[n]} \frac{1^{1 \in a]}}{\rho_{s_{i}^{\prime}, c_{i}^{\prime}}(\mathbb{Z})}
$$

Proof. We compute the probability that algorithm samples z_{1}, \ldots, z_{n} :

$$
\operatorname{Pr}[\text { algorithm outputs } v]=\prod_{i \in[n]} D_{\mathbb{Z}, s_{i}^{\prime}, c_{i}^{\prime}}\left(z_{i}\right)=\frac{\prod_{i \in[n]} \rho_{s_{i}^{\prime}, c_{i}^{\prime}}\left(z_{i}\right)}{\prod_{i \in[n]} \rho_{s_{i}^{\prime}, c_{i}^{\prime}}(\mathbb{Z})}
$$

Now, observe that

$$
\prod_{i \in[n]} \rho_{s_{i}^{\prime}, c_{i}^{\prime}}\left(z_{i}\right)=\prod_{i \in[n]} \rho_{s}\left(\left(z_{i}-c_{i}^{\prime}\right) \cdot\left\|\tilde{b}_{i}\right\|\right)=\rho_{s}\left(\sum_{i \in[n]}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}\right)=\rho_{s}(v-c)=\rho_{s, c}(v)
$$

since $\rho_{s / k,}(x)=\exp \left((x-c)^{2} k^{2} / s^{2}\right) \quad \tilde{b}_{i}$ are pairwise orthogonal by previous lemma

$$
=\rho_{s}((x-c) k) \quad \text { and } \rho_{s} \text { is rotationally invariant }
$$

Theorem (Gentry-Peikert-Vaikuntanathan). There is an efficient algorithm that takes a basis B of a lattice $\mathcal{L}=\mathcal{L}(B)$, a coset $C+\mathcal{L}$ and a Gaussian width parameter $S \geqslant\|\tilde{B}\| \cdot \omega(\sqrt{\log n})$ and outputs a sample whose distribution is statistically dose to $D_{\perp, S, C}$

Proof. Follows by combining above algorithm with sampling algorithm for integers.
The desired distribution can be written as

$$
D_{L, s, c}(v)=\rho_{s, c}(v) \cdot Q^{-1}
$$

for some normalization constant $Q \in \mathbb{R}$. By the previous lemma, the algorithm outputs $v \in \mathcal{L}(B)$ w.p.

$$
\rho_{s, c}(v) \cdot \frac{1}{\prod_{i \in[n]} \rho_{s_{i}^{\prime}, c_{i}^{\prime}}(\mathbb{Z})}
$$

τ problem: c_{i}^{\prime} could be correlated with v so this is not a fixed normalization constant

$$
\begin{aligned}
& \longrightarrow \rho_{s}\left(\sum_{i \in G\}}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}\right) \\
& =\exp \left(-\pi\left\|\sum_{i \in(1)}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}\right\|_{2}^{2} / s^{2}\right) \\
& \begin{aligned}
&\left\|\sum_{i \in(a)}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}\right\|_{2}^{2}=\sum_{i, j \in(n)}\left(z_{i}-c_{i}^{\prime}\right)\left(z_{j}-c_{j}^{\prime}\right) \tilde{b}_{i}^{\top} b_{j} \\
&=\sum_{i \in[n]}\left(z_{i}-c_{i}^{\prime}\right)^{2}\left\|\tilde{b}_{i}^{2}\right\|^{2} \\
& \text { by orthogonality }
\end{aligned} \\
& \Rightarrow \rho_{s}\left(\sum_{i \in[f]}\left(z_{i}-c_{i}^{\prime}\right) \tilde{b}_{i}\right)=\prod_{i \in(n)} \rho_{s}\left(\left(z_{i}-c_{i}^{\prime}\right)\left\|\tilde{b}_{i}\right\|\right)
\end{aligned}
$$

Now, $\eta(\mathbb{Z}) \leqslant \lambda_{n}(\mathbb{Z}) \cdot \omega(\sqrt{\log n})=\omega(\log n)$. When $s \geqslant\|\tilde{B}\| \cdot \omega(\sqrt{\log n})$, then $s_{i}^{\prime}=s /\left\|\tilde{b}_{i}\right\| \geqslant \omega(\sqrt{\log n})=\eta$ Thus, $\rho_{s_{i}^{\prime}, c}(\mathbb{Z}) \in[1-$ neg., $1+$ neg $1 \cdot] \cdot \rho_{s}(\mathbb{Z})$, which is a quantity that is independent of v and c. Thus, the algorithm outputs \checkmark with probability proportional to $\rho s, c(v)$, as required.
Implication: To sample from $D_{\mathcal{L}, \mathrm{s}, \mathrm{c}}$, need a basis B for $\mathcal{L}=\mathcal{L}(B)$ where $\|\tilde{B}\| \leqslant s / \omega(\sqrt{\log n})$. Need a short basis to sample preimages.

Next: Sampling discrete Gaursions with a gadget traplar.
Suppose $A R=G$ where R is short. Sampling preimage for A is easy: to solve $A x=y$, set $x=R \cdot G^{-1}(y)$.
To sample a pre-image of A, candidate approach is to sample $Z \leftarrow D_{\rho_{y}^{1}}^{1}(\theta)$ and output $x=R z$.
Since $G=g^{\top} \otimes I_{n}$, it suffice to sample from $\mathcal{L}_{\frac{1}{y}}\left(g^{\top}\right)$. Now $\mathcal{L}^{1}\left(g^{\top}\right)$ can be described by the following shoot basis:

$$
B=\left(\begin{array}{cccc}
2^{-1} & 2 & & \\
& -1 & \ddots & \\
& & & -2 \\
& & -12
\end{array}\right) \in \mathbb{Z}_{q}^{t \times t} \quad \text { where } \quad t=\log q
$$

Observe

Gram-Schmidt norm of this basis is very short: $\tilde{B}=2 I_{n}$ so $\|\tilde{B}\|=2$. Can use GPV to sample from $D_{\mathcal{L}_{u}^{1}}\left(g^{\top}\right), s, c$ whenever $s>\sqrt{\omega(\log n)}$. Procedure is also very simple since $\tilde{B}=2 I_{n}$.

GVW allows us to sample $x \leftarrow D_{\mathbb{Z}^{n}, s}$ such that $G x=y$ for any $y \in \mathbb{Z}_{q}^{n}$. What about the distribution of $R X$. Certainly $A R x=G x=y$, but is $R x$ still a discrete Gaussian?

Yes... but discrete Gaussian is not spherical. Resulting distribution is discrete Gaussian with covariance $S^{2} R R^{\top}$.

Is this problematic?
Yes: given multiple samples, can estimate covariance and this leaks R (the trapdoor)

Spherical Gaussian centered Distribution after rescaling samples at 0

$$
\text { by }\left[\begin{array}{ll}
1 & 1 \\
1
\end{array}\right]
$$

Our goal is spherical discrete Gaussian with width s (ie., covariance $s^{2} I_{n}$).
Key approach: Gaussian convolution lemma
"Sum of two independent Gcumsions is Gaunsicicn" - analog genvally holds for discrete Gaussian over lattices (see [PeAl]).
We can sample x where $A x=y$ where x is from a Gaunsten with covariance $S^{2} R R^{\top}$
To "correct" the distribution, we can sample z where $A z=0$ and z is discrete Gaussian with corarclance $\hat{S}^{2} I-S^{2} R R^{\top}$

Given R where $A R=G$, goal is to sample $x \sim D_{\mathbb{Z}}$ ns where $A x=y$

1. Sample perturbation $p \in \mathbb{Z}^{m}$ from discrete Gaussian with covariance $\hat{s}^{2} I_{n}-s^{2} R R^{\top}$ (and mean 0)
2. Sample $u \leftarrow D \mathbb{Z}^{n}, s$ where $G u=y-A p$
[Note: we will reed that $s \gg \hat{s}$ - see analysis befool]
3. Output $x=p+R u$

Correctness: $A x=A_{p}+A R_{u}=A_{p}+G_{u}=A_{p}+y-A_{p}=y$
Security: Covariance of x is $\underbrace{\hat{S}^{2} I_{n}-s^{2} R R^{\top}}_{p}+\underbrace{s^{2} R R^{\top}}_{A u}=\hat{s}^{2} I_{n}$, which is independent of $R \quad\left[x \sim D_{\mathbb{U}^{m}}, \hat{s}\right]$

Can we sample a discrete Gaussian over \mathbb{Z}^{m} with covariance $\hat{S}^{2} I_{n}-s^{2} R R^{\top}$?
Requirement. $\hat{s}^{2} I_{n}-s^{2} R R^{\top}$ is positive definite.
$\longrightarrow I_{n}$ this case, we can write $\hat{S}^{2} I_{n}-s^{2} R R^{\top}=M M^{\top}$ (one such decomposition is given by Cholesky decomposition)
$\mapsto C_{a n}$ now sample for $D_{Z^{m}, 1}$ and scale by $M \quad S_{1}(R)=\max _{\| \| \|=1}\|R u\|$
Sufficient condition for $\hat{S}^{2} I_{n}-s^{2} R R^{\top}$ to be positive -definite: $\hat{S} \approx s \cdot s_{1}(R)$ where R is the largest singular value of R \uparrow quality of trapdoor is measured by $S_{1}(R)$

Note: Using GPV sampling algorithm, we can set $s=\omega(\sqrt{\log n})$ since $\mathcal{L}^{\perp}(G)$ has good basis (Gram-Schmidt norm of 2)

Recap: We will abstract the above samplay procedures into the following algorithms:
sometimes, we let Trap hen take lattice parameters n, m, q explicitly
TrapGen (1^{λ}): Outputs (A, R) where $A \in \mathbb{Z}_{i}^{n \times m}$ is statistically close to uniform, R is short and $A R=G$.
Sample Gaussian (s): Outputs $x \leftarrow D_{\mathbb{Z}}{ }^{m}$, s [rejection sampling]
Sample Pre (A, R, u, s) : Outputs $x \leftarrow D_{\mathcal{L}_{u}^{1}}(A), s \quad$ [GPV samplicy followed by perturbation]
Guarantee: if $s>S_{1}(R) \omega(\sqrt{\log m})$, then for $(A, R) \leftarrow \operatorname{Trop} \operatorname{ben}\left(1^{\lambda}\right)$:

$$
\begin{aligned}
& \{x \leftarrow \operatorname{Sample} \operatorname{Gaussian}(s):(x, A x)\}^{\stackrel{s}{\approx}} \\
& \left\{y \leftarrow \mathbb{Z}_{\tilde{q}}^{m}, x \leftarrow \operatorname{Sample} \operatorname{Pre}(A, R, u, s):(x, y)\right\}
\end{aligned}
$$

if $R \in\{0,1\}^{\mathrm{mkm}}$, can bound

$$
S_{1}(R) \leq m
$$

GPV signatures in ROM:
could also be a short
Setup $\left(1^{\lambda}\right):(A, R) \leftarrow \operatorname{TrapGen}\left(1^{\lambda}\right)$. Set $v k=(A, \beta)$ and $s k=(A, R, s)$ where $s, \beta=\tilde{O}(m)$
$\operatorname{Sign}(s k, m)$: Compute $y \leftarrow H(m) \in \mathbb{E}_{6}^{n}$ and output $\sigma \leftarrow \operatorname{SamplePre}(A, R, u, s) \leftarrow$ need to be careful, see H HS 1!
Verity $(v k, m, \sigma)$: Check that $\|m\| \leqslant \beta$ and $A \cdot \sigma=H(m)$
Security reduces to ISIS n, m, q, β. In the security proof, reduction algorithm does not have trapdoor. Will simulate signing queries on in by sampliy $\sigma \leftarrow$ Sample Gaussian (s), programming $H(m) \mapsto A \sigma$. This is statistically close to real signature distribution.

