By Ender Survin,
$$\sum_{n \in \mathbb{Z}} f(x) = 4(n) = \sum_{j \in \mathbb{Z}} \hat{\theta}_j(j) = \sum_{j \in \mathbb{Z}} f_j(j)$$

Appled 5 p(d), we have $\sum_{n \in \mathbb{Z}} f_i(n) = \sum_{j \in \mathbb{Z}} f_j(j) = \sum_{j \in \mathbb{Z}} p_{j,i}(j) = 5 \sum_{j \in \mathbb{Z}} p_{i,i}(j)$
Princip surphy oth a guidet traplet. Supple as has a data AR+5 (a) (a) A a determinity data to orders).
Surving parts: Surving from $D_{2,4,c}$. (the organise complex:
) Surving $x \neq \mathbb{Z}$ or $[c-5 + 5(n), c-5 + 5(n)]$. We did not $4(n) = O((\frac{11}{2}n))$.
2) Durpher $x \neq \mathbb{Z}$ or $[c-5 + 5(n), c-5 + 5(n)]$. We did not $4(n) = O((\frac{11}{2}n))$.
2) Durpher $x \neq \mathbb{Z}$ or $[c-5 + 5(n), c-5 + 5(n)]$. We did not $4(n) = O((\frac{11}{2}n))$.
2) Durpher $x \neq \mathbb{Z}$ or $[c-5 + 5(n), c-5 + 5(n)]$.
3) Theorem of Banday, that $3 = 2(\frac{1}{2}n) = \frac{1}{2} + \frac{1}{2}e^{\frac{1}{2}n} + \frac{1}{2}(1 + n)(5(n))$
3) Theorem of D_{2,0} (x) with the normal $[c-5 + 5(n), c-5 + 5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5 + 5(n), c-5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5 + 5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5 + 5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5(n), c-5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5(n), c-5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5(n), c-5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5(n), c-5(n)]$.
3) Constraints, regarding marking adjust the solution $[c-5(n)]$.
3) Constraints, regarding marking $[c-5(n), c-5(n)]$.
3) Constraint $[c-5(n), c-5(n$

Proof. Let
$$\pi_{i}: \mathbf{R}^{i} \rightarrow \text{span}(\mathbf{h},...,\mathbf{h})$$
 be the projection from \mathbf{R}^{i} and the subspace spanned by $\mathbf{h}_{i},...,\mathbf{h}_{i}$.
We show that $\forall j \in \{n\}$:
 $\mathbf{V} - \mathbf{V}_{j} - \pi_{j}(\mathbf{c}_{j}) = \sum_{i \in \mathcal{G}_{j}} (2_{i} - C_{i}) \tilde{\mathbf{h}}_{i}$
For $j = 0$, clain is invariable (V=Ve, $\pi_{e}(\mathbf{c}_{e}) = 0$).
Suppose data hidds for $j + \mathbf{h} = 1$. Thus,
 $\mathbf{V}_{0} - \mathbf{v}_{k} - \pi_{k}(\mathbf{c}_{e}) = \mathbf{V}_{0} + \mathbf{v}_{k+1} + \mathbf{2}_{k}\mathbf{b}_{k} - (\pi_{k-1}(\mathbf{c}_{k}) + \mathbf{c}_{k}^{i}\mathbf{b}_{k})$
 $= (\mathbf{v}_{0} + \mathbf{v}_{k-1}) + \mathbf{2}_{k}\mathbf{b}_{k} - (\pi_{k-1}(\mathbf{c}_{k}) + \mathbf{c}_{k}^{i}\mathbf{b}_{k})$
 $= (\mathbf{v}_{0} + \mathbf{v}_{k-1}) + \mathbf{2}_{k}\mathbf{b}_{k} - \pi_{k-1}(\mathbf{c}_{k})) - C_{k}^{i}\mathbf{b}_{k}$
 $= (\mathbf{v}_{0} - \mathbf{v}_{k-1} - \pi_{k-1}(\mathbf{c}_{k-1})) + \mathbf{2}_{k}(\mathbf{b}_{k} - \mathbf{c}_{k-1}(\mathbf{b}_{k})) - C_{k}^{i}\mathbf{b}_{k}$
 $= (\mathbf{v}_{0} - \mathbf{v}_{k-1} - \mathbf{x}_{k}(\mathbf{c}_{k-1})) + \mathbf{2}_{k}(\mathbf{b}_{k} - \mathbf{c}_{k-1}(\mathbf{b}_{k})) - C_{k}^{i}\mathbf{b}_{k}$
 $= (\mathbf{v}_{0} - \mathbf{v}_{k-1} - \mathbf{x}_{k}(\mathbf{c}_{k-1})) + \mathbf{2}_{k}(\mathbf{b}_{k} - \mathbf{c}_{k-1}(\mathbf{b}_{k})) - C_{k}^{i}\mathbf{b}_{k}$
 $= (\mathbf{v}_{0} - \mathbf{v}_{k-1} - \mathbf{x}_{k}(\mathbf{c}_{k-1})) + \mathbf{2}_{k}(\mathbf{b}_{k} - \mathbf{c}_{k-1}(\mathbf{b}_{k})) - C_{k}^{i}\mathbf{b}_{k}$
 $= \sum_{i \in \mathbf{b}_{k-1}} (2_{i}-\mathbf{c}_{k})\mathbf{b}_{i} + (\mathbf{a}_{k} - \mathbf{c}_{k})\mathbf{b}_{k}$
 $= \sum_{i \in \mathbf{b}_{k-1}} (2_{i}-\mathbf{c}_{k})\mathbf{b}_{k}$
 $= \sum_{i \in \mathbf{b}_{k-1}} (2_{i}-\mathbf{c}_{k-1})\mathbf{b}_{k}$
 $= \sum_{i \in \mathbf$

<u>hearem (Gentry-Peikert-Vaikuntanothan)</u>. There is an efficient algorithm that takes a basis B ot a lattice L = 2(B), a cose C + L and a Gaussian width parameter S ≥ ||B̃||:w(virgn) and outputs a sample whose distribution is statistically dose to D1,s,c

Proof. Follows by combining above algorithm with sampling algorithm for integers.

The desired distribution can be written as

$$D_{L,s,c}(v) = P_{s,c}(v) \cdot Q^{-1}$$

for some normalization constant Q G TR. By the previous lemma, the algorithm outputs V G L(B) u.p.

Now, $\mathcal{T}(\mathbb{Z}) \leq \lambda_n(\mathbb{Z}) \cdot \omega(\sqrt{\log n}) = \omega(\log n)$. When $S \geq \|\tilde{B}\| \cdot \omega(\sqrt{\log n})$, then $S'_i = \sqrt{\|\tilde{b}'_i\|} \geq \omega(\sqrt{\log n}) = 2$. Thus, $\mathcal{P}_{S'_i, C'_i}(\mathbb{Z}) \in [1-\operatorname{negl.}, 1+\operatorname{negl.}] \cdot \mathcal{P}_{S}(\mathbb{Z})$, which is a quantity that is independent of V and C. Thus, the algorithm outputs V with probability propertional to $\mathcal{P}_{S,C}(V)$, as required.

<u>Implication</u>: To sample from D_{2,5,c}, need a basis B for L= L(B) where $\|\tilde{B}\| \leq \frac{S}{\omega(\sqrt{100}n)}$. Need a short basis to sample preimages.

Next: Sampling discrete Gaussians with a gadget trapdoor.

Suppose AR = G where R is short. Sampling pre-image for A is easy; to solve Ax = y, set $x = R \cdot G^{-1}(y)$. To sample a pre-image of A, candidate approach is to sample $Z \leftarrow D_{L_{y}}^{1}(G)$ and output $x = R \cdot Z$.

Since $G = g^T \otimes In$, it suffice to sample from $L_y^1(g^T)$. Now $L^1(g^T)$ can be described by the following short basis: $B = \begin{pmatrix} 2 \\ -1 & 2 \\ -1 & -1 \end{pmatrix} \in \mathbb{Z}_q^{\pm \times t}$ where $t = \log q$

Observe

 $(1 \ 2 \ 4 \ \cdots \ 2^{\log g}) \cdot \begin{pmatrix} 2 \\ -i \\ -i \\ -i \\ -i \\ z \end{pmatrix} = 0 \pmod{g}$ [this is when g is power of two, similar construction possible for non-power of two as well]

Gran-Schnidt norm of this basis is very short: $\hat{B} = 2In$ so $\|\hat{B}\| = 2$. Can use GPV to sample from $D_{L_u}(gT)$, s, c. whenever $s > \sqrt{\omega}(\log n)$. Procedure is also very simple since $\hat{B} = 2In$.

GVW allows us to sample $x \leftarrow D_{\mathbb{Z}^n}$, such that Gx = y for any $y \in \mathbb{Z}_q^n$. What about the distribution of $\mathbb{R} \cdot x$. Certainly $A\mathbb{R} \cdot x = Gx = y$, but is $\mathbb{R} \cdot x$ still a discrete Gaussian?

Yes. but discrete Coussian is not spherical. Resulting distribution is discrete Coussian with covariance S² RR^T.

→ Is this problemantic?

<u>Yes</u>: given multiple samples, can estimate covariance and this leaks R (the trapdoor)

Spherical Gaussian centered Distribution after rescaling samples at 0 by [16]

Our goal is spherical discrete Gaussian with righth s (i.e., covariance $s^2 I_n$).

<u>Key approach</u>: Gaussian convolution lemma "Sum of two independent Gaussians is Gaussian" - analog genurally holds for discrete Gaussian over lattices (see [Pe:11]). We can sample x where Ax=y where x is from a Gaussian with covariance $S^2 RR^T$ To "correct" the distribution, we can sample z where Az=D and z is discrete Gaussian with covariance $S^2 I - S^2 RR^T$ Given R where AR = G, goal is to sample $x \sim D_{Z^n,s}$ where Ax = y1. Sample perturbation $p \in \mathbb{Z}^m$ from discrete Gaussian with covariance $\hat{S}^2 In - S^2 RR^T$ (and mean 0) 2. Sample $u \leftarrow D_{Z^n,s_1}$ where Gu = y - Ap [Note: we will need that $S \gg \hat{S}$ - see analysis below] 3. Output x = p + Ru

 $\frac{\text{Correctness}}{\text{Security}}: A \times = Ap + ARu = Ap + Gu = Ap + y - Ap = y$ $\frac{\text{Security}}{\text{Security}}: Covariance of x is \underbrace{\hat{S}^2 In - \hat{S}^2 RR^T + \hat{S}^2 RR^T}_{p} = \hat{S}^2 In , \text{ which is independent of } Rs \left[x \sim D_{Z^n} \hat{S} \right]$

Can we sample a discrete Gaussian over \mathbb{Z}^m with covariance $\hat{S}^2 I_n - \hat{S}^2 R R^T$?

Requirement. 3² In - S² RR^T is positive definite.

 $\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$

Note: Using GPV sampling algorithm, we can set s = w(slign) since L¹(G) has good basis (Gram-Schnidt norm of 2)

$$\left\{y \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{m}, x \leftarrow \text{SamplePre}(A, R, u, s) : (x, y)\right\}$$

GPV signatures in ROM: GPV signatures in ROM: $Setup(1^{\lambda}): (A,R) \leftarrow TropGen(1^{\lambda}).$ Set vk = (A, p) and sk = (A,R,s) where $s, p = \overline{b}(m)$ $Sign(sk, m): Compute y \leftarrow H(m) \in \mathbb{Z}_{2}^{n}$ and $output \sigma \leftarrow Sample Pre(A,R, u, s) \in \mathbb{Z}_{2}^{n}$ $Verity(vk, m, \sigma): Check that <math>\|m\| \leq p$ and $A \cdot \sigma = H(m)$

Security reduces to ISIS n,m, g, g. In the security proof, reduction algorithm does not have trapdoor. Will simulate signing queries on in by sampling of ← Sample Gaussian (S), programming H(m) → Ao. This is stutistically close to real signature distribution.