So far, we have shown how to build symmetric crypto and public-key crypto from standard lattice assumptions (eg, SIS and LWE)
But it turns out, lattices have much additimat structure \Rightarrow enable many new advanced functionalities not knows to follow from many other stand ard assumptions (eg., disuse log, tutoring, pairing, etc.)

We will begin by studying fully homomoserphic encryption (FHE)
\rightarrow encryption scheme that supports arbitrary computation on encrypted data [very useful for outsourced computation]
Abstractly: given encryption ct of vale x under some public key, can we devise from that an encryption of $f(x)$ for an arbibtaxy function f ?

- So far, we have seen examples of encryption schemes that support one type of operation (eeg., ndiditon) on cipherterts
- ElGamal encryption (in the exponent): homomorphic with respect to additim-
- Reed encryption: homomooppic with respect to addition
- For FHE, need homomorphism with respect to two operations: addition and multiplication

Major open problem in cyptogapany (dates back to late 1970s!) - first solved by Stanford student Craig Gentry in 2009
\longrightarrow revolufioizized lattice-based cryptography!
\longrightarrow very surprising this is possible: encryption reeds to "scramble" messages to be secure, but homomorphism requires preversiny structure to enable arbitron computation

General blueprint: 1. Build somewhat homomoophic exception (SwHE) - encryption scheme that supports bounded number of homomorphic operations
2. Bootstrap SWHE to FHE (essentially a way to "refresh" ciphertext)

Focus will be on building SWHE (has all of the ingredients for realizing FHE)
Starting point: Regear encryption
$\left.\begin{array}{ll}p k: & A=\left[\begin{array}{c}\bar{A} \\ s^{\top} \bar{A} \\ +e^{\top}\end{array}\right] \in \mathbb{Z}_{b}^{n \times m} \\ s k: & s^{\top}=\left[-\bar{s}^{\top} \mid 1\right] \in \mathbb{Z}_{q}^{n}\end{array}\right\}$ Imariant: $s^{\top} A=e^{\top}$
ct: $r \&\left\{\{0,1\}^{m}, \quad c \leftarrow A r+\left[\begin{array}{c}n-1 \\ 1 g_{2} \mid \cdot \mu\end{array}\right]\right.$
as by as $e^{T} r$ is small, decryption succeeds

We can easily extend the ciphertext to be a matrix (this provides a redundant encoding of the message μ):

$$
\left.\begin{array}{l}
\text { - Pad the matrix } \hat{A}=\left[\begin{array}{c}
A \\
0^{(m-n) \times m}
\end{array}\right] \in \mathbb{Z}_{q}^{m \times m} \\
\text { and the key } \hat{s}=\left[\begin{array}{c}
S \\
0^{m-n}
\end{array}\right] \in \mathbb{Z}_{q}^{m}
\end{array}\right\} \hat{S}^{\top} \hat{A}=s^{\top} A=e^{\top}
$$

- To encrypt, sample $R \stackrel{R}{\leftarrow}\{0,1\}^{m \times m}$ and compute

$$
\begin{aligned}
C \leftarrow & \hat{A} R+\mu \cdot\left\lfloor\frac{q}{2}\right\rceil \cdot\left[\begin{array}{ll}
I_{n} & 0^{n \times(m-n)} \\
0^{(m-n) \times n} & 0^{(m-n) \times(m-n)}
\end{array}\right] \\
& \qquad\left[\frac{A R}{0^{(m-n) \times m}}\right] \longleftarrow \text { security unaffected }(L W E+L H L)
\end{aligned}
$$

Consider decryption:

$$
\hat{S}^{\top} C=\hat{s}^{\top} \hat{A} R+\mu \cdot\left\lfloor\frac{q}{2}\right\rceil \cdot \hat{s}^{\top}\left[\begin{array}{l|l}
I_{n} & 0 \\
\hline 0 & 0
\end{array}\right]
$$

$$
=e^{\top} R+\mu \cdot\left\lfloor\frac{q}{2}\right\rceil \cdot \hat{S}^{\top}
$$

$$
\approx \mu \cdot\left[\begin{array}{l}
q \\
2
\end{array}\right] \cdot \hat{s}^{\top} \quad \longleftarrow \text { Decrypt as usual since } \hat{s} \text { contains a component with value } 1
$$

Observation: C is a ciphertext and \hat{s} is a left eigenvector of \hat{C} with associated eigenvalue $\mu \cdot\left[\frac{9}{2}\right]$.
Suppose for a moment that thus was an exact eigenvalue (and we do not scale μ).
亿 no scaling needed if there is no error is
Then, suppose $\hat{s}^{\top} C_{1}=\mu_{1} \hat{s}^{\top}$ and $\hat{s}^{\top} C=\mu_{2} \hat{s}^{\top}$

- Eigenvalues add: $\hat{s}^{\top}\left(C_{1}+c_{2}\right)=\mu_{1} \hat{s}^{\top}+\mu_{2} \hat{s}^{\top}=\left(\mu_{1}+\mu_{2}\right) \hat{s}^{\top}$
- Eigenvalues multiply: $\hat{s}^{\top} C_{1} C_{2}=\mu_{1} \hat{s}^{\top} C_{2}=\mu_{1} \mu_{2} \hat{s}^{\top}$
fully homomorphic!
What about the error?

Back to Reyes:

$$
\begin{aligned}
& \hat{s}^{\top} C_{1}=e^{\top} R_{1}+\mu_{1} \cdot\left\lfloor\frac{q}{2}\right\rceil \cdot \hat{s}^{\top} \\
& \hat{s}^{\top} C_{2}=e^{\top} R_{2}+\mu_{2} \cdot\left\lfloor\frac{q}{2}\right\rceil \cdot \hat{s}^{\top}
\end{aligned}
$$

Addition: $\hat{S}^{\top}\left(C_{1}+C_{2}\right)=e^{\top}\left(R_{1}+R_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot\left[\frac{q}{2}\right] \cdot \hat{s}^{\top}$ basically works; error grows additively
Multiplication: $\hat{s}^{\top} C_{1} C_{2}=\left(e^{\top} R_{1}+\mu_{1} \cdot\left[\frac{q}{2} 7 s^{\top}\right) C_{2}\right.$

$$
\begin{aligned}
& =\frac{e^{\top} R_{1} C_{2}}{}+\frac{\mu_{1} \cdot\left\lfloor\frac{q}{2}\right\rceil \cdot s^{\top} C_{2}}{\uparrow}+\frac{e^{\top} R_{1} C_{2}}{\mu_{1} \cdot \mu_{2}\left[\frac{q}{2}\right]^{2}}+\frac{\mu_{1} \cdot\left\lfloor\frac{q}{2}\right] \cdot e^{\top} R_{2}}{\uparrow}
\end{aligned}
$$

$e^{\top} R_{1}$ is small, not the right if $\mu_{1}=1$, ako
\longleftarrow lots of problems!!
but C_{2} is not! form... large

Main issue: error term from one ciphertext multiplies with a ciphertext daring homomorphic multiplication \rightarrow noise blows up
Solution: Use the gadget matrix (i.e. bit decomposition) to reduce matrix sizes!

Gentry-Sahai-Waters (GSW) FHE:

$$
-\operatorname{Encrypt}(A, \mu): R \leftarrow\{0,1\}^{m \times m} \quad \text { new message embedding }
$$

$$
C \leftarrow A R+\mu \cdot G \in \mathbb{Z}_{b}^{n \times m}
$$

- Decrypt (S, C) : compute $s^{\top} C G^{-1}\left(\frac{g}{2} \cdot I_{n}\right)$ and round as usual

Correctness: $s^{\top} C G^{-1}\left(\frac{q}{2} \cdot I_{m}\right)=s^{\top}(A R+\mu \cdot G) G^{-1}\left(\frac{q}{2} \cdot I_{n}\right)$

$$
=\underbrace{e^{\top} R G^{-1}\left(\frac{9}{2} I_{n}\right)}+\frac{9}{2} s^{\top}
$$

suppose e is $B \cdot$ bounded

$$
\mapsto\left\|e^{\top} R G^{-1}\left(\begin{array}{l}
q \\
2
\end{array} I_{n}\right)\right\|_{\infty} \leqslant m^{2} B
$$

GSW invariant: $C=A R+\mu \cdot G$ for some small R Decryption succeeds it $m \cdot B \cdot\|R\|_{\infty} \leq \frac{9}{4}$

$$
\longrightarrow \text { choose } q>4 m B \cdot\|R\|_{\infty}
$$

as long as $m^{2} B<\frac{q}{4}$, scheme is correct τ if q is power of two or
Security: Identical to Regev. we choose scaling factor to be a power of two, then
Homomorphism: Suppose

$$
\begin{aligned}
& C_{1}=A R_{1}+\mu_{1} G \\
& C_{2}=A R_{2}+\mu_{2} G
\end{aligned}
$$ multiplying by $G^{-1}(\cdot)$ does not change norm \rightarrow tighten bound to $m B<\frac{9}{4}$

$$
\begin{aligned}
& -\operatorname{Setup}\left(1^{\lambda}\right): \text { Sample } \begin{array}{l}
\bar{A} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m} \\
\bar{s} \leftrightarrow \mathbb{Z}_{q}^{n}
\end{array} \quad \rightarrow p k=A=\left[\begin{array}{c}
\bar{A} \\
\left.\bar{s}^{\top} \bar{A}+e^{\top}\right]
\end{array} \quad\left(s^{\top} A=e^{\top}\right)\right. \\
& e \leftarrow x^{m} \quad s k=s=[-\bar{s} \mid 1]
\end{aligned}
$$

Addition: $C_{1}+C_{2}$ is encryption of $\mu_{1}+\mu_{2}$:

$$
C_{1}+C_{2}=A\left(R_{1}+R_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot G
$$

New error: $R_{+}=R_{1}+R_{2},\left\|R_{+}\right\|_{\infty} \leqslant\left\|R_{1}\right\|_{\infty}+\mathbb{R}_{2} \|_{\infty}$
Multiplication: $C_{1} G^{-1}\left(C_{2}\right)$ is encryption of $\mu_{1} \cdot \mu_{2}$:

$$
\begin{aligned}
C_{1} G^{-1}\left(c_{2}\right) & =\left(A R_{1}+\mu_{1} G\right) G^{-1}\left(c_{2}\right) \\
& =A R_{1} G^{-1}\left(c_{2}\right)+\mu_{1} G \cdot G^{-1}\left(c_{2}\right) \\
& =A R_{1} G^{-1}\left(c_{2}\right)+\mu_{1} C_{2} \\
& =A R_{1} G^{-1}\left(c_{2}\right)+\mu_{1}\left(A R_{2}+\mu_{2} G\right) \\
& =A(\underbrace{R_{1} G^{-1}\left(c_{2}\right)+\mu_{1} R_{2}}_{R_{x}})+\mu_{1} \mu_{2} G \\
\text { New error: } R_{x} & =R_{1} G^{-1}\left(C_{2}\right)+\mu_{1} R_{2}, \quad\left\|R_{x}\right\|_{\infty} \leqslant\left\|R_{1}\right\|_{\infty} \cdot m+\left\|R_{2}\right\|_{\infty}
\end{aligned}
$$

After computing d repeated squarings: noise is $m^{0(d)} \quad\left[\right.$ for correotress, require that $q>4 m B \cdot\|R\|_{\infty}$, so bittlength of of scales with $]$ multiplicative depth of circuit
\longrightarrow also requires super-poly modulus when $d=\omega(1)$
(stronger assumption needed)

But not quite fully homonorphic encryption: we reed a bound on the (multiplicative) depth of the computation
From SWHE to FHE. The above construction requires imposing an a prior bound on the multiplicative depth of the computation. To obtain fully homomorphic encryption, we apply Gentry's brilliant insight of bootstrapping.

High-level idea. Suppose we have SWHE with following properties:

1. We can evaluate functions with multidicative depth d
2. The decryption function can be implemented by a circuit with multiplicative depth $d^{\prime}<d$

Then, we can build an FHE scheme as follows:

- Public key of FHE scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the SWHE public key
- We now describe a ciphertext-refreshing procedure:
- For each SWHE ciphertext, we can associate a "noise" level that keeps track of how many more homomorphic operations can be performed on the ciphertest (while maintaining correctness).
\rightarrow for instance, we can evaluate depth-d circuits on fresh ciphertexts; after evaluating a single multiplication, we can only evaluate circuits of depth $-(d-1)$ and so on...
- The refresh procedure takes any valid ciphertext and produces one that supports depth- $\left(d-d^{\prime}\right)$ homomorphism; since $d>d^{\prime}$, this enables unbounded (ie., arbitrary) computations on ciphertats

Idea: Suppose $c t_{x}=$ Encrypt $(p k, x)$.
Using the SWHE, we can compute $c_{f(x)}=$ Encrypt $(p k, f(x))$ for any f with multiplicative depth up to d Given $c t_{x}$, we first compute

$$
c t_{c t}=\text { Encrypt }\left(p k, c t_{x}\right) \quad \text { [strictly speaking, encrypt bit by bit] }
$$

