
Incorporating Certificates with the Wireguard VPN Protocol

Aya Abdelgawad and Soham Roy

May 6, 2022

Abstract

We present an extension to the key exchange portion of the Wireguard protocol that enables the
use of certificates. While the Wireguard VPN protocol has improved upon many aspects of older
VPN solutions, it lacks the ability to scale efficiently for enterprise use due to a lack of support for
certificates. This paper outlines the new authenticated key exchange (AKE) construction and proves
its security under the extended Canetti-Krawczyk model. While our proposed construction maintains
the fundamental security properties of Wireguard, some performance and security tradeoffs were
made in order to add functionality.

1 Introduction

Wireguard is a relatively new VPN protocol available with kernel support on numerous platforms that
aims to improve upon existing protocols by being "faster, simpler, and leaner" [Don22]. The project
emphasizes maintaining a small and easy-to-audit code base, but the current feature set is insufficient
for operating at scale. In particular, Wireguard currently relies on pre-shared static keys rather than
certificates. Enterprises prefer to separate authorizing and authenticating users from issuing access,
and certificates provide a mechanism to achieve this by using cryptographic signatures to delegate trust
to a central authority. In this investigation, we propose and analyze an extension of the Wireguard VPN
protocol that incorporates certificate support, concluding with a discussion on practical implementation
considerations.

2 Preliminaries

We will refer to the party that sends the first message of a key exchange as the initiator, and the responder
is the recipient. A session is a specific instance of a key exchange protocol from the perspective of a
particular party, and it can be uniquely identified by the identity of the two parties involved, the party
whose perspective this is from, and the messages exchanged

(
i.e., the tuple (i dinitiator, i dresponder,role ∈

{initiator, responder},m1, ...,mn)
)
. A session is complete once the final message of the protocol is sent.

Upon completion, each party will have the tuple (k, i d), where k is the session key and i d is the identity of
the other party they believe they are communicating with. Once a party erases k (and any other session
state variables) from their memory storage, we say that the key is expired for that party (note that a
session can be expired for one party but not necessarily the other).

We define correctness of an authenticated key exchange to mean that when two parties (stereotyp-
ically, we shall call them Alice and Bob) complete a session, they end up with the same shared key and
are able to correctly identify the other party. Essentially, upon completing the session, Alice outputs
(kA ,Bob), Bob ouputs (kB , Ali ce), and kA = kB .

1

To define security of an authenticated key exchange, we will be using the extended Canetti-Krawczyk
model [LLM07]. In the original Canetti-Krawczyk [CK01] model, a PPT adversary M has full control over
the network, with the ability to read and modify messages, delay when they reach the recipient (or block
them entirely), and craft their own messages. M can also force an instance of a key exchange to begin
between two parties. Lastly, the original model allows for certain times when adversaries can corrupt
parties by forcing them to leak all their secrets (both long-term and session-specific). The extended
model adds to the adversary’s capabilities by allowing for more fine-grained revelations of secrets at any
time. Specifically, M can make any of the following queries during their run:

• MasterKeyReveal(A): reveals the master private key of party A

• EphemeralKeyReveal(A, si d): reveals the ephemeral private key of party A in a (possibly incom-
plete) session identified by si d

• SessionKeyReveal(si d): reveals the session key for a completed session si d

We define the notion of a clean session as one where M cannot trivially compute the associated ses-
sion key. Specifically, a session si d = (A,B ,role,m1, ...,mn) is clean if neither of the following conditions
apply:

• M chooses or reveals both the static and ephemeral secret keys of either party.

• M runs SessionKeyReveal(si d).

The extended Canetti-Krawczyk model defines the AKE Game with the following rules:

1. There is a certificate authority CA that all parties can reliably communicate with (M cannot in-
terfere with a party’s communication with CA). At the start of the experiment, all honest parties
generate and register their static public keys with the CA.

2. The adversary may then create arbitrarily many certificates for adversary-controlled parties using
any public key of their choosing (even one owned by an honest party).

3. The adversary initiates network communications between parties of its choosing, making any of
the queries mentioned earlier. At any point during the game, M can run Test(si d) on a completed
session si d . This query returns with equal probability either the session key for si d or a random
value. Afterwards, the adversary may continue making any of the queries mentioned in the previ-
ous step.

4. The game ends once the adversary outputs a guess of whether this is the true session key or not.
M wins the game if they guess correctly and si d is a clean session.

We say that an AKE protocol is secure in the extended Canetti-Krawczyk model if the adversary’s
probability of winning the game is only negligibly greater than 1/2 (with respect to the security parame-
ter).

Finally, we define notation of certificates as a tuple (Spk
i d , i d , si gi d) where Spk

i d is i d ’s public key, i d is

a string encoding an identity, and si gi d is a signature of the tuple (Spk
c , i d). Verifying a certificate is done

by verifiyng si gi d using the trusted certificate authority (CA) key.

2

3 Current Wireguard Key Exchange Protocol

We shall give a brief overview of the current Wireguard key exchange protocol before explaining how we
shall modify it. For a thorough description of the protocol, see [Don20].

3.1 Relevant Operators and Functions

• ||: concatenation

• DH.Keygen() → sk, pk: generates a random ECDH secret key and associated public key, specifi-
cally using Curve25519 [Ber06]

• DH(sk, pk) → x: computes the point multiplication on Curve25519 given secret key sk and public
key pk

• KDFn(k, x) → (τ1, ...,τn): key derivation function using HKDF to create an n-tuple with the pro-
vided key k and input x [Kra10]

• HASH(x) → h: hashes x using BLAKE2s (a faster, more compact version of SHA-3) [ANWOW13]

• AEAD(k, i ,m,τ) → ct : ChaCha20Poly1305 AEAD encryption of the message m with its associated
authentication tag τ, using key k and counter i

• TIMESTAMP() → t : returns the current time

3.2 Relevant Variables

• i ,r - decorators of other variables denoting whether they belong to the initiator or responder, re-
spectively

• Spk
∗ ,Ssk∗ - the static public and secret key, respectively, of party * (i or r)

• E pk
∗ ,E sk∗ - the ephemeral public and secret key, respectively, of party *

• H ,C - hash output and chaining key

• Const1,Const2 - string constants used during setup

3.3 Overview of Key Exchange

The initiator sends the first message by doing the following computations (there are more components
and steps than what we present here, but for the sake of brevity and simplicity, we will only be going over
the core components of the initiator’s message)

3

C ← HASH(Const1)

H ← HASH
(
HASH(C ||Const2)||Spk

r
)

E sk
i ,E pk

i ← DH.Keygen()

C ← KDF1(C ,E pk
i)

H ← HASH(H ||E pk
i)

(C ,k) ← KDF2
(
C ,DH(E sk

i ,Spk
r)

)
c ← AEAD(k,0,Spk

i , H)

H ← HASH(H ||c)

(C ,k) ← KDF2
(
C ,DH(Ssk

i ,Spk
r)

)
t ← AEAD(k,0,TIMESTAMP(), H)

H ← HASH(H ||t)

The initiator then sends m1 = (E pk
i ,c, t). The responder will verify the message by decrypting the cipher-

texts, doing the same computations, and checking that they match the provided hashes (it also needs to
do these computations so its state variables end up matching the initiator’s). If the responder success-
fully verifies the message, they construct their response by doing the following (oversimplified) compu-
tations:

E sk
r ,E pk

r ← DH.Keygen()

C ← KDF1(C ,E pk
r)

H ← HASH(H ||E pk
r)

C ← KDF1
(
C ,DH(E sk

r ,E pk
i)

)
C ← KDF1

(
C ,DH(E sk

r ,Spk
i)

)
(C ,τ,k) ← KDF3(C ,0)

H ← HASH(H ||τ)

ϵ← AEAD(k,0,;, H)

The responder then sends back m2 = (E pk
r ,ϵ) to be verified by the initiator.

4 Proposed Construction for Certificate Support

Our proposed protocol, which we call cert-WG, extends the Wireguard protocol by one round trip to
send over certificates. Recall that the first message in the Wireguard key exchange protocol consists of

4

m1 = (E pk
i ,c, t), where c and t are encryptions of the initiator’s static public key and the timestamp,

respectively. The key to encrypt both c and t is generated using the responder’s master public key, re-
quiring knowledge of the key before initiating the protocol. However, this is not a reasonable expectation
in a certificate setting as clients may not know the keys associated with peers ahead of time. Therefore,
in order to preserve the structure of the existing Wiregaurd protocol, both parties must first exchange
certificates.

Our extension to Wireguard consists of inserting two messages at the beginning of the protocol. In
cert–WG, the first message the initiator’s certificate, Ci . The responder will only respond with their cer-

tificate Cr if the initiator’s certificate is valid. The initiator will use the responder’s public key Spk
c,r in Cr as

the identity of the responder in the original Wireguard protocol (and vice versa for the responder using
the initiator’s key). After the first two messages are exchanged, the Wireguard protocol begins as normal,

with the initiator sending m1. The responder must then verify that the static public key Spk
i they de-

crypt from m1 equals Spk
c,i that they extracted from the Ci . Without this step, there is a potential identity

misbinding attack. Finally, the responder can send the second message in the Wireguard handshake,
concluding the handshake portion of cert-WG.

(See the Appendix for a visual summary of the protocol.)

5 Proof of Security

The Wireguard key exchange protocol was proven to be secure in the extended Canetti-Krawkczyk model
[DP18]1. We claim that if the Wireguard key exchange is secure, then cert-WG is, too. Suppose there exists
an efficient adversary µwho has a non-negligible advantage ϵ in the AKE Game for cert-WG. We can then
construct an adversary M for Wireguard’s key exchange that has an advantage of ϵ in the AKE Game by
using µ and simulating cert-WG to it. M will do the following:

1. M simulates being all honest parties to µ. M also simulates the CA and distributes certificates to
those parties (as well as any fictitious parties µ wishes to register with the CA).

2. M runs µ and allows them to influence the simulated network, copying µ’s actions in the real net-
work and relaying the responses back into the simulated network. For example, if µ tries to start a
cert-WG key exchange with an honest party in the simulated network, Mwill start a Wireguard key
exchange with that party in the real network (the only difference being that M must first simulate
sending over that party’s certificate and verifying the certificate received).

3. Once the simulated protocol reaches the Wireguard portion of the protocol, M is relying on the
real parties to produce valid messages in the protocol. M stops any message m in the real network
before it reaches its intended destination and mimics having it sent in the simulated network. If µ
makes any modifications to m to produce m′, M will also modify m in the real network so that m′

is sent instead.

4. M continues simulating the cert-WG protocol until µ outputs a guess b′, which M will echo as
their guess.

1The paper actually proved a minimally modified version of the Wireguard protocol secure due to the protocol’s implicit
reliance on the first message in the transport data for authenticating the initiator. To get around this, they had the initiator send
an additional message at the end to confirm they have the same key value. In order for the proof to unfold nicely, we implicitly
apply the same modification to cert-WG by also adding the key-confirmation message at the end and reduce this modified
version of cert-WG to the modified Wireguard protocol.

5

Note that M is able to simulate µ’s expected environment almost perfectly, with the only exception
possibly happening after m1 is sent. At this stage in the cert-WG protocol, the responder must check
that the public key in the initiator’s certificate matches the key after decrypting c. Since M may not be
able to decrypt c themselves to check this, they will rely on a policy of aborting the protocol if µ attempts
to tamper with c, assuming that this check will fail. Since c is an AEAD ciphertext, we get ciphertext
integrity guarantees that µ would only have a negligible chance of tampering the ciphertext undetected
anyways. Thus, M perfectly simulates the cert-WG protocol except with negligible probability, so M’s
advantage in the game is only negligibly smaller than ϵ.

6 Conclusion

In this paper, we have shown that the Wireguard key exchange is quite easily extended to support certifi-
cates while still maintaining security in the extended Canetti-Krawczyk model. There are a few costs that
come with this model, though. First, it requires an entire additional round trip (although the protocol
can be modified to 1.5 RTT by having the responder send both their certificate and m1 in one message).
Second, the certificates can be verified but not be authenticated (i.e., proving knowledge of the associ-
ated private key) until getting to the Wireguard part of the protocol. This clashes with Wireguard’s design
principle "to not send any responses to unauthenticated packets" [Don20]. Lastly, certificates in practice
are much more complicated than we presented in our paper. Practical considerations usually necessitate
additional sophistication in the construction of certificates, including key usage, certificate constraints,
validity periods, transparency logs, revocation support, etc (all elements we considered out of scope of
this paper). Incorporating all the code needed for proper certificate verification would vastly expand
Wireguard’s relatively small codebase, a trait it prides itself in.

All these factors push for a more modular implementation of cert-WG. Rather than directly extending
the Wireguard protocol to support certificates, a more practical approach is to add a layer of certificate
support above the Wireguard key exchange. Due to the robust design of the Wireguard protocol, exten-
sions that add functionality can be added with relative simplicity. It is possible to tailor these extensions
to control the trade-off between functionality and security, while maintaining much of the underlying
performance and security properties of the original protocol. An extension such as cert-WG can be im-
plemented to augment the key exchange with zero overhead to data transit.

References

[ANWOW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winner-
lein. Blake2: Simpler, smaller, fast as md5. In Michael Jacobson, Michael Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, Applied Cryptography and Network Secu-
rity, pages 119–135, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, pages
207–228, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology — EURO-
CRYPT 2001, pages 453–474, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

6

[Don20] Jason A. Donenfeld. Wireguard: Next generation kernel network tunnel. Proceedings of the
Network and Distributed System Security Symposium, 2020.

[Don22] Jason A. Donenfeld. Wireguard, 2022.

[DP18] Benjamin Dowling and Kenneth G. Paterson. A cryptographic analysis of the wireguard
protocol. In Bart Preneel and Frederik Vercauteren, editors, Applied Cryptography and
Network Security, pages 3–21, Cham, 2018. Springer International Publishing.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The hkdf scheme. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages 631–648, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, Provable Security, pages
1–16, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

A Diagram of cert-WG

Initiator Responder
Ci = (Spk

c,i , idinitiator, sigidinitiator)−−▷ verify Ci

verify Cr
Cr = (Spk

c,r, idresponder, sigidresponder)
◁−−

verify m1 and check that

m1 = (Epk
i ,c, t)

−−▷ Decrypt(k,c) → Spk
i = Spk

c,i

verify m2
m2 = (Epk

r ,ϵ)
◁−−

7

	Introduction
	Preliminaries
	Current Wireguard Key Exchange Protocol
	Relevant Operators and Functions
	Relevant Variables
	Overview of Key Exchange

	Proposed Construction for Certificate Support
	Proof of Security
	Conclusion
	Diagram of cert-WG

