CS 395T: Topics in Cryptography (Lattice-Based Cryptography)

Discrete Gaussian Sampling Summary

Instructor: David Wu

Here, we summarize some key results on sampling discrete Gaussians over lattices. Much of the material is adapted from [Pei16, GPV08, Pei10, MP12].

Gaussians. We define the *n*-dimensional (spherical) Gaussian function $\rho_s \colon \mathbb{R}^n \to (0, 1]$ with width s > 0 to be the function

$$\rho_s(\mathbf{x}) := \exp(-\pi \|\mathbf{x}\|^2 / s^2).$$

For a center $\mathbf{c} \in \mathbb{R}^n$, we define the Gaussian with width *s* centered at \mathbf{c} to be the function

$$\rho_{s,\mathbf{c}} := \exp(-\pi \|\mathbf{x} - \mathbf{c}\|^2 / s^2).$$

The *n*-dimensional Gaussian function with *covariance* $\mathbf{\Sigma} \in \mathbb{R}^{n \times n}$ is the function

$$\rho_{\sqrt{\Sigma}}(\mathbf{x}) := \exp(-\pi \cdot \mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x})$$

The covariance of a spherical Gaussian with parameter s is simply $s\mathbf{I}_n$, where \mathbf{I}_n is the $n \times n$ identity matrix. Note that the covariance matrix is always *positive definite* (i.e., there exists $\mathbf{B} \in \mathbb{R}^{n \times m}$ such that $\Sigma = \mathbf{B}\mathbf{B}^{\mathsf{T}}$). If \mathbf{x} is a (spherical) Gaussian with parameter s, then $\mathbf{R}\mathbf{x}$ is a Gaussian with covariance $\mathbf{R}\mathbf{R}^{\mathsf{T}}$.

Discrete Gaussians over lattices. Let $\mathcal{L} = \mathcal{L}(\mathbf{B})$ be a lattice. The (spherical) discrete Gaussian distribution $D_{\mathcal{L},s}$ on a lattice coset $\mathbf{c} + \mathcal{L}$ is simply the Gaussian distribution with parameter s with its support restricted to $\mathbf{c} + \mathcal{L}$. Namely, for $\mathbf{x} \in \mathbf{c} + \mathcal{L}$,

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) := \frac{\rho_s(\mathbf{x})}{\rho_s(\mathbf{c}+\mathcal{L})} = \frac{\rho_s(\mathbf{x})}{\sum_{\mathbf{y}\in\mathbf{c}+\mathcal{L}}\rho_s(\mathbf{y})}$$

and for $\mathbf{x} \notin \mathbf{c} + \mathcal{L}$, $D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = 0$. This definition naturally extends to non-spherical Gaussians.

Theorem 1 ([GPV08]). There exists an efficient algorithm that takes as input a basis **B** for a lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, any coset $\mathbf{c} + \mathcal{L}$, and any width parameter $s \ge \|\tilde{\mathbf{B}}\| \cdot \omega(\sqrt{\log n})$ and outputs a sample that is statistically close to $D_{\mathbf{c}+\mathcal{L},s}$.

The SIS lattice. For a matrix $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$, the SIS lattice is defined as

$$\mathcal{L}^{\perp}(\mathbf{A}) \coloneqq \left\{ \mathbf{x} \in \mathbb{Z}_{q}^{m} : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \right\} \supseteq q\mathbb{Z}^{m}.$$

For a vector $\mathbf{u} \in \mathbb{Z}_q^n$, we define

$$\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}) \coloneqq \left\{ \mathbf{x} \in \mathbb{Z}_q^m : \mathbf{A}\mathbf{x} = \mathbf{u} \bmod q \right\} = \mathbf{z} + \mathcal{L}^{\perp}(\mathbf{A}),$$

for some $\mathbf{z} \in \mathbb{Z}_q^m$ where $\mathbf{A}\mathbf{z} = \mathbf{u}$.

Gadget trapdoors. We say that $\mathbf{R} \in \mathbb{Z}_q^{m \times n\ell}$ is a gadget trapdoor for $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ if $\mathbf{AR} = \mathbf{G}$. We can take the following approach (from Micciancio and Peikert [MP12]) to sample from $D_{\mathcal{L}^{\perp}_{\mathbf{u}}(\mathbf{A}),s}$ using a gadget trapdoor for \mathbf{A} :

• Set $s' = \omega(\sqrt{\log n})$. Sample a perturbation vector $\mathbf{p} \leftarrow D_{\mathbb{Z}^m, s^2 \mathbf{I}_m - (s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}}}$. We can do this as long as $s^2 \mathbf{I}_m - (s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}}$ is positive definite. Taking $s = s_1(\mathbf{R}) \cdot \omega(\sqrt{\log n})$, where $s_1(\mathbf{R}) := \max_{\|\mathbf{u}\|=1} \|\mathbf{R}\mathbf{u}\|$ denotes the largest singular value of \mathbf{R} suffices here. When $s^2 \mathbf{I}_m - (s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}}$, we can decompose it as $\mathbf{L} \mathbf{L}^{\mathsf{T}}$ (e.g., by computing its Cholesky decomposition). Then, we can sample \mathbf{p} by first sampling $\mathbf{p}' \leftarrow D_{\mathbb{Z}^m,1}$ (using Theorem 1) and setting $\mathbf{p} \leftarrow \mathbf{L} \mathbf{p}'$.

- Let $\mathbf{z} \leftarrow \mathbf{u} \mathbf{Ap}$. Sample $\mathbf{y} \leftarrow D_{\mathcal{L}_{\mathbf{z}}^{\perp}(\mathbf{G}),s'}$. Recall that \mathbf{G} has a basis \mathbf{B} where $\|\tilde{\mathbf{B}}\| \leq \sqrt{5}$ (when q is a power of 2, $\|\tilde{\mathbf{B}}\| = 2$), so we can use Theorem 1 to implement this step.
- Output $\mathbf{x} \leftarrow \mathbf{R}\mathbf{y} + \mathbf{p}$.

For correctness, observe that

$$Ax = ARy + Ap = Gy + Ap = z + Ap = u$$
,

so $\mathbf{x} \in \mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A})$. Consider the distribution of \mathbf{x} . The distribution of \mathbf{y} is a discrete Gaussian with width s', so $\mathbf{R}\mathbf{y}$ is a discrete Gaussian with covariance $(s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}}$. The vector \mathbf{p} is Gaussian with covariance $s^2 \mathbf{I}_m - (s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}}$, so by the Gaussian convolution lemma (see [Pei10] for a precise description), the sum $\mathbf{R}\mathbf{y} + \mathbf{p}$ is statistically close to a discrete Gaussian with covariance $(s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}} + (s^2 \mathbf{I}_m - (s')^2 \mathbf{R} \mathbf{R}^{\mathsf{T}}) = s^2 \mathbf{I}_m$. This precisely coincides with the desired distribution $D_{\mathcal{L}_n^{\perp}(\mathbf{A}),s}$. Refer to [MP12] for more details.

Preimage sampleable trapdoor functions. Using the above algorithm, we can construct a preimage sampleable trapdoor function as follows:

• TrapGen(n, q): On input lattice parameters n, q, set $\bar{m} = 3n \log q$, let $t = n \lceil \log q \rceil$, and $m = \bar{m} + t$. Sample $\bar{\mathbf{A}} \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{q}^{n \times \bar{m}}$ and $\bar{\mathbf{R}} \leftarrow \{0, 1\}^{m \times t}$. Construct matrices

$$\mathbf{A} = [ar{\mathbf{A}} \mid \mathbf{G} - ar{\mathbf{A}}ar{\mathbf{R}}] \in \mathbb{Z}_q^{n imes m} \qquad \mathbf{R} = \left[egin{array}{c} \mathbf{R} \ \mathbf{I}_t \end{array}
ight] \in \mathbb{Z}_q^{m imes t}.$$

Output the public matrix \mathbf{A} and the trapdoor \mathbf{R} . Note that we can also sample \mathbf{R} from other distributions to get smaller parameters; see [MP12].

- SampleGaussian(m, s): On input the dimension m, sample and output $\mathbf{x} \leftarrow D_{\mathbb{Z}^m, s}$ (e.g., using Theorem 1).
- SamplePre(A, R, u, s): On input the public matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times 2m}$, a trapdoor $\mathbf{R} \in \mathbb{Z}_q^{2m \times m}$, and a target vector $\mathbf{u} \in \mathbb{Z}_q^{2m}$, sample and output $\mathbf{x} \leftarrow D_{\mathcal{L}_{\mathbf{u}}^{\perp}(\mathbf{A}),s}$ (using the procedure described above).

The above algorithms satisfy the following properties:

- Let $(\mathbf{A}, \mathbf{R}) \leftarrow \mathsf{TrapGen}(n, q)$. By the leftover hash lemma, the distribution of \mathbf{A} is statistically close to uniform over $\mathbb{Z}_q^{n \times m}$. Since $\mathbf{R} \in \{0, 1\}^{m \times t}$, we can naïvely bound $s_1(\mathbf{R})$ by $\sqrt{mt} = O(n \log q)$.
- Let $\mathbf{x} \leftarrow \mathsf{SampleGaussian}(m, s)$. If $s \ge s_1(\mathbf{R}) \cdot \omega(\sqrt{\log n})$, then the distribution of $\mathbf{A}\mathbf{x}$ is statistically close to uniform over \mathbb{Z}_q^n . This follows from the fact that $\eta(\mathcal{L}^{\perp}(\mathbf{A})) \le s_1(\mathbf{R}) \cdot \omega(\sqrt{\log n})$ (see [MP12, Lemma 5.3]) and the result shown from class.
- When $s \ge s_1(\mathbf{R}) \cdot \omega(\sqrt{\log n})$, the following two distributions are statistically indistinguishable:

$$\left\{\mathbf{x} \leftarrow \mathsf{SampleGaussian}(m, s) : (\mathbf{x}, \mathbf{Ax})\right\} \text{ and } \left\{\mathbf{y} \leftarrow^{\mathtt{R}} \mathbb{Z}_q^n, \mathbf{x} \leftarrow \mathsf{SamplePre}(\mathbf{A}, \mathbf{R}, \mathbf{y}, s) : (\mathbf{x}, \mathbf{y})\right\}.$$

References

- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In *STOC*, pages 197–206, 2008.
- [MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In *EUROCRYPT*, pages 700–718, 2012.
- [Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO, pages 80–97, 2010.
- [Pei16] Chris Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci., 10(4):283-424, 2016.