
CS 395T: Topics in Cryptography

Topic: La�ice-Based Cryptography

David Wu

Compilation of scribe notes from Spring 2022

Warning: �ese notes are a direct compilation of scribe notes from the Spring 2022 o�ering of the course. �ey have

not been checked for completeness or correctness!

Contents

1 Introduction to Lattices 1
1.1 Why La�ices? . 1

1.2 La�ice De�nitions and Problems . 1

2 Short Integer Solutions 4
2.1 Recap of lecture one . 4

2.2 Computational problems over la�ices . 4

2.3 Hardness of GapSVPγ . 5

2.3.1 Open problems . 5

2.3.2 Algorithms for SVP . 5

2.4 Short Integer Solutions (SIS) problem . 5

2.4.1 SIS as a la�ice problem . 5

3 Cryptographic Constructions from SIS 7
3.1 Collision-Resistant Hash Functions from SIS . 7

3.2 Le�over Hash Lemma . 7

3.3 Commitments from SIS . 10

4 Lattice Trapdoors and Digital Signatures 12
4.1 Commitments from SIS and the ISIS Problem . 12

4.2 La�ice Trapdoors . 12

4.3 Digital Signatures from La�ice Trapdoors in the Random Oracle Model 13

5 Preimage-Sampleable Trapdoor Functions 14
5.1 Constructing Preimage Sampleable Trapdoor functions from SIS . 14

5.2 Discrete Gaussian Distribution . 14

5.3 Gram-Schmidt Orthogonalization . 15

5.4 Approach for Preimage Sampling . 16

6 Discrete Gaussian Sampling 17
6.1 Preimage Sampleable Trapdoor Functions . 17

6.2 Discrete Gaussian Sampling . 18

7 Discrete Gaussian Sampling 20
7.1 Review of Gaussian sampling . 20

7.2 Rejection sampling . 20

7.3 GPV algorithm . 21

7.4 Using the GPV algorithm for signatures . 21

8 Learning With Errors 23
8.1 Basics of LWE . 23

8.2 Properties of LWE . 23

8.3 Symmetric Encryption with LWE . 24

8.4 Public Key Encryption with LWE . 25

9 Fully Homomorphic Encryption 26
9.1 Fully Homomorphic Encryption . 26

9.2 Somewhere Homomorphic Encryption from LWE . 26

9.3 Gentry-Sahai-Waters FHE . 28

10 FHE Bootstrapping 30
10.1 GSW Encryption . 30

10.2 FHE with Polynomial Modulus . 31

11 Lattice-Based Key Exchange 33
11.1 Homomorphically Evaluating Decryption . 33

11.1.1 Arithmetizing the PBP . 33

11.1.2 Noise Discussion . 33

11.2 Regev Encryption of Vectors . 34

11.2.1 Protocol . 34

11.2.2 Correctness . 34

11.2.3 Security . 34

11.2.4 Savings . 34

11.3 Key Exchange from LWE . 34

11.3.1 Protocol . 34

11.3.2 Correctness . 35

11.3.3 Security . 35

12 Homomorphic Signatures 36
12.1 De�nition . 36

12.2 Construction . 37

13 Homomorphic Signatures and Commitments 39
13.1 Homomorphic Signature Schemes . 39

13.2 Unforgeability . 39

13.3 Context-Hiding . 40

13.4 Dual-Mode Homomorphic Commitment Schemes . 41

14 Homomorphic Commitments 43
14.1 Recap: GSW Homomorphic Commitments . 43

14.2 Dual Mode Commitments . 43

14.3 An Application: Designated-Prover NIZKs for NP . 44

14.3.1 Construction A�empt 1 . 44

14.3.2 Construction A�empt 2: Move commitment to the public parameter 45

14.3.3 Solution: add a layer of indirection . 45

15 Attribute-Based Encryption 46
15.1 Preliminaries . 46

15.2 Construction . 46

15.2.1 Dual-Regev Encryption . 46

15.2.2 ABE Construction (Informal) . 48

16 Attribute-Based Encryption 49
16.1 ABE From Dual Regev Encryption . 49

17 Predicate Encryption 52
17.1 Predicate Encryption from LWE . 53

18 Functional Encryption 55
18.1 De�nition . 55

18.2 Building block for FE: garbled circuits. 56

18.3 Using Garbled Circuits for Two-Party Computation . 57

19 Succinct Functional Encryption 59
19.1 Functional Encryption from Public-Key Encryption . 59

19.2 Succinct FE from Garbled Circuits, ABE, and FHE . 60

20 Designated-Veri�er NIZKs 62
20.1 Recap . 62

20.2 Interactive Zero-Knowledge Protocol for Graph Hamiltonicity . 62

20.3 One-Time Designated-Veri�er NIZK for Graph Hamiltonicity . 64

21 Reusable Designated-Veri�er NIZKs 66
21.1 Reusable Designated-Veri�er NIZKs . 66

21.2 Construction based on ABE . 66

21.3 Publicly-Veri�able NIZKs . 68

22 Correlation-Intractability and NIZKs 70
22.1 Recap . 70

22.2 NIZKs from Circular-Secure FHE . 70

22.2.1 Correlation-Intractability for Search Relations . 71

23 NIZKs from LWE 73
23.1 Wrapup of NIZKs from FHE . 73

23.2 CIHFs from SIS . 73

24 Multi-Key Fully Homomorphic Encryption 75
24.1 Application: Two-Round Multiparty Computation . 75

24.2 Two-Party Computation from FHE . 75

24.3 Multi-Key Fully Homomorphic Encryption . 76

25 Homomorphic Secret Sharing 79
25.1 Review of Multi-Key FHE . 79

25.2 Secret Sharing . 80

25.3 Homomorphic Secret Sharing . 81

26 Distributed Point Functions 82
26.1 Recap: Homomorphic Secret Sharing . 82

26.2 Function Secret Sharing . 82

26.3 Distributed Point Functions . 83

27 Private Information Retrieval 85
27.1 Premise . 85

27.2 Potential Constructions . 85

27.3 Improving E�ciency of La�ice-Based Schemes with Rings . 87

27.3.1 Ring-LWE . 87

27.3.2 General E�ciency Improvements from Rings . 88

28 Conclusion 89
28.1 Notes on RLWE . 89

28.2 Course summary . 89

CS 395T: Topics in Cryptography January 19, 2022

Lecture 1: Introduction to La�ices

Lecturer: David Wu Scribe: David Wu

1.1 Why Lattices?
�e focus of this course is on la�ice-based cryptography. �ere are several motivations to study la�ice-based

cryptography:

• Conjectured post-quantum resilience. Many la�ice-based problems are conjectured to be hard not only for

classical computers, but also for quantum computers. �ey are one of the leading candidates for the ongoing

NIST standardization e�orts.

• Security based on worst-case hardness. Cryptography typically relies on average case hardness (i.e., a

random instance of a problem drawn from some distribution of instances is hard to solve). �is is a much

stronger requirement than the notion of worst-case hardness encountered for instance in the study of NP-

completeness, where a problem is “hard” if there exists any hard instance. Problems that are hard in the worst

case can o�en be much easier in the average case, especially if we consider distributions over structured

instances.

A distinctive feature of la�ice-based cryptography is that it allows us to base cryptography on a worst-case
complexity assumption. Namely, a sequence of works have shown that certain la�ice problems (e.g., short

integer solutions or learning with errors) are hard on average as long as some closely related la�ice problems

(e.g., approximate shortest vector, approximate shortest independent vector) are hard in the worst case. �is

means that la�ice-based cryptosystems are secure unless all instances of certain la�ice problems are solvable

in polynomial time.

• Enables advanced cryptographic capabilities. Lastly, la�ices provide a rich algebraic structure and enable

a broad range of advanced cryptographic capabilities. �ese include notions like fully homomorphic encryption,

homomorphic signatures, and functional encryption. Until very recently, la�ice-based cryptography has

provided the only such realizations of these functionalities.

1.2 Lattice De�nitions and Problems
We begin with some basic de�nitions and describe some of the key problems studied in la�ice-based cryptography.

Unless otherwise indicated, for a vector v ∈ Rn, we will write ‖·‖ to denote the `2 norm (i.e., the Euclidean norm):

‖v‖ =
(∑

i∈[n] v
2
i

)1/2

. Note that the choice of `p norm does not signi�cantly impact the hardness of la�ice

problems [Pei08].

De�nition 1.1 (La�ices). An n-dimensional la�ice L ⊆ Rn is a discrete additive subspace of Rn:

• Discrete: For every x ∈ L, there exists a neighborhood around it such that contains x and no other la�ice

point. More formally for every x ∈ L, there exists ε > 0 such that Bε(x) ∩ L = {x}, where Bε(x) =
{y ∈ Rn : ‖x− y‖ ≤ ε}. In analytical terms, every subset S ⊆ L is an open set.

• Additive subspace: For all x,y ∈ L, both −x ∈ L and x + y ∈ L.

An example of an n-dimensional la�ice is Zn (i.e., the set of n-dimensional vectors with integer coe�cients).

Another example is the “q-ary” la�ice qZn where q ∈ N (i.e., the set of n dimensional vectors where each coordinate

is an integer multiple of q).

1

https://csrc.nist.gov/projects/post-quantum-cryptography

Lattice basis. While most (non-trivial) la�ices are in�nite, they are �nitely-generated by taking integer linear

combinations of a small number of basis vectors B = [b1 | · · · | bk] where each bi ∈ Rn and b1, . . . ,bk are linearly

independent (over Rn). We write L(B) to denote the la�ice generated by B:

L(B) = B · Zk =

∑
i∈[k]

αibi : αi ∈ Z for all i ∈ [k]

 .

We refer to k as the rank of the matrix. �e basis is not unique. For example, the vectors [1, 0]T and [0, 1]T form a

basis for Z2
, as do the vectors [7, 5]T and [11, 8]T. In fact, the choice of basis plays an important role in the hardness

of many la�ice problems: problems are easy if we have a “good” basis and hard if we have a “bad” basis. As we will

see later in this course, o�entimes a “good” basis can be used as a trapdoor in a cryptographic construction while

a “bad” basis can be used as the public key. We typically measure the quality of a basis by the norm of the vectors

contained in the basis.

Minimum distance. A central quantity of interest in the study of la�ices is the minimum distance (i.e., the norm

of the shortest non-zero vector in a la�ice).

De�nition 1.2 (Minimum Distance). Let L be an n-dimensional la�ice. �en the minimum distance of L, denoted by

λ1(L) is the length of the shortest non-zero vector:

λ1(L) = min
v∈L\{0}

‖v‖

More generally, we write λi(L) to denote the ith successive minimum of L: the minimum r ∈ R such that L contains

i linearly independent basis vectors of norm at most r.

Computational problems. We now de�ne several computational problems on la�ices:

• Shortest vector problem (SVP): Given a basis B for an n-dimensional la�ice L = L(B), �nd the shortest

non-zero vector v ∈ L: namely, �nd v ∈ L such that ‖v‖ = λ1(L).

• Approximate shortest vector problem (SVPγ): Given a basis B of an n-dimensional la�ice L = L(B), �nd

a non-zero vector v ∈ L such that ‖v‖ ≤ γ(n) · λ1(L).

• Decisional approximate shortest vector problem (GapSVPγ): Given a basis B of an n-dimensional la�ice

L = L(B), decide if λ1(L) ≤ 1 or if λ1(L) ≥ γ(n).

• Approximate shortest independent vectors problem (SIVPγ): Given a basisB of a full-rankn-dimensional

la�ice L = L(B), output a set B′ = {b′1, . . . ,b′n} ⊆ L of linearly independent basis vectors where ‖b′i‖ ≤
γ(n) · λn(L) for all i ∈ [n].

�e main problems we rely on in la�ice-based cryptography are the short integer solutions problem (SIS) and the

learning with errors problem (LWE). Hardness of these problems can be based on the hardness of the GapSVP and

SIVP problems (with appropriately-chosen approximation factors). To date, we do not know how to base cryptography

on the search versions of SVP (i.e., SVP or SVPγ).

Complexity of GapSVP. We now state some of the known complexity results on GapSVP. A similar set of

complexity results are known for the SIVP problem.

2

1

NP-hard*

[Ajt98, Mic98, Kho04]

c ∈ N

quasi-NP-hard*

[Kho04, HR07]

2(logn)1−ε
√

n/ logn

NP ∩ coAM
[GG00]

√
n

NP ∩ coNP
[AR04]

BPP
[LLL82]

2n log logn/ logn

Figure 1.1: Complexity of GapSVPγ as a function of the approximation factor γ (and la�ice dimension n). We

write c > 1 to denote any constant greater than 1 and ε > 0 to denote any constant greater than 0. We write

“NP-hard*” to denote NP-hardness under a randomized reduction (speci�cally, a reduction that maps no instances

to no instances with probability 1 and yes instances to yes instances with probability at least 2/3; an algorithm

for an NP-hard* problem would imply that NP = RP). We write “quasi-NP-hard*” to denote NP-hardness under a

randomized quasi-polynomial time reduction (i.e., a reduction that runs in time 2polylog(n)
).

We now describe some open problems for understanding the complexity of la�ice problems:

• Derandomizing reductions. �e known NP-hardness results for GapSVP are under randomized reductions.

Can we give a deterministic reduction for some gap? For the particular case of the `∞ norm, Dinur showed that

approximating GapSVP to a nearly polynomial factor nc/ log logn
for some constant c > 0 is NP-hard [Din00].

• Polynomial-time reductions. Can we give polynomial-time (randomized) reductions for super-constant

approximation factors? Existing reductions [Kho04, HR07] require super-polynomial time.

An open problem in cryptography is to reduce cryptography to an NP-hard problem. While problems like GapSVP
and SIVP are NP-hard for certain approximation factors (under randomized reductions), these regimes are not known

to be useful for cryptography. To date, all la�ice-based cryptographic constructions rely on polynomial approximation

factors γ(n) ≥ n. As shown in Fig. 1.1, when γ(n) ≥
√
n, GapSVPγ ∈ NP∩ coNP. �us it is unlikely that the la�ice

problems relevant to cryptography are NP-hard.

Algorithms for SVP. �e main class of algorithms for solving la�ice problems are based on the la�ice reduction

algorithms of Lenstra, Lenstra, and Lovász [LLL82]. �ese are polynomial-time algorithms and solve SVP to subexpo-

nential approximation factors γ = 2Θ(n log logn/ logn)
. To achieve a polynomial approximation factor, the current best

algorithms all run in exponential time (e.g., 2Θ(n)
) [WLW15, ALNS20, ALS21]. We can also achieve trade-o�s between

the approximation factor and the running time: namely, we can solve GapSVPγ in time 2Θ̃(n/ log γ)
[Sch87], where

Θ̃(·) suppresses constant and polylogarithmic terms. �ese tradeo�s are primarily interesting when considering

super-polynomial approximation factors. �ese algorithms also represent the state-of-the-art when considering

quantum algorithms.

3

CS 395T: Topics in Cryptography January 24, 2022

Lecture 2: Short Integer Solutions

Lecturer: David Wu Scribe: Niels Kornerup

2.1 Recap of lecture one
De�nition 2.1. A la�ice L is the set of integer linear combinations of some basis B.

L = L(B) = B · Zk = {xibi : xi ∈ Z, bi ∈ B}

where the bi ∈ Rn and they are linearly independent.

Some examples of la�ices include Zn and qZn where q ∈ Q.

De�nition 2.2. λ1(L) is the norm of the shortest vector in L.

λ1(L) := min
v∈L\{0}

‖v‖2

λi is the smallest value of r ∈ R such that L contains i linearly independent vectors v1, . . . , vi where ‖vj‖ ≤ r.

As an example, for the la�ice L = 2Zn, λ1(L) = λn(L) = 2. We will o�en use either the L2 or the L∞ norm in

this class, but we will see later that this choice doesn’t ma�er too much. For this lecture, we are using the L2 norm.

2.2 Computational problems over lattices
De�nition 2.3 (Shortest vector problem (SVP)). Given a basis B of an n-dimensional la�ice, �nd v ∈ L such that

‖v‖ = λ1(v)

�e shortest vector problem is not known to be in NP, but it is NP-hard. We also consider an approximation to

SVP parameterized by the approximation factor γ = f(n) ≥ 1.

De�nition 2.4 (Approximate shortest vector problem (SVPγ)). Given B for la�ice L = L(B), �nd a vector v such

that ‖v‖ ≤ γλ1(L).

When γ = 1, the above is the shortest vector problem. For larger γ, we are looking for an approximate solution.

It is not obvious how to solve the above two problems in NP, since we are not given any information about the value

of λ1(L). Instead, we can construct a promise problem that can be solved in NP.

De�nition 2.5 (Decisional approximate SVP (GapSVPγ)). Given a basis B for n-dimensional la�ice L = L(B), decide

whether:

1. λ1(L) ≤ 1

2. λ1(L) ≥ γ

under the promise that one of these cases hold for L.

One witness to this problem is a vector v ∈ L such that ‖v‖ < γ. We consider one �nal computational problem.

De�nition 2.6 (Approximate shortest independent vector problem (SIVPγ)). Given a full-rank n-dimensional la�ice

L = L(B), output a set of linearly independent vectors b′1, . . . b
′
n ∈ L such that ‖b′i‖ ≤ γλn(L).

4

2.3 Hardness of GapSVPγ
�e hardness of GapSVPγ depends signi�cantly on the value of γ. If γ is large, then sampling of elements in L is

likely to reveal one with a norm less than γ. �is plot shows how the hardness of GapSVPγ changes with γ.

γ = 1

NP-hard

γ = O(1)

quasi-NP-hard

2(logn)1−ε
√
n/ log n

NP∩ coAM

√
n

NP∩ coNP

O(n)

OWFs

2n log logn/ logn

BPP

When γ = O(1) we have NP-hardness under a randomized reduction that maps no instances to no instances

with probability 1 and maps yes instances to yes instances with probability
2
3 . �us a polynomial time algorithm for

GapSVPO(1) implies that NP=RP (one sided error polynomial time).

It is unlikely that when γ = nε this problem is NP hard, since that will collapse the polynomial hierarchy. We have

constructions for one way functions under the assumption that γ = O(n) is hard for polynomial time algorithms and

we have an e�cient randomized algorithm for GapSVP2n log logn/ logn .

It is unlikely that we can use la�ices to develop NP-hardness based cryptography, since our problems are already

in NP ∩ coNP in the se�ings where we get cryptography.

2.3.1 Open problems
1. Finding a non-randomized reduction when γ is sub-polynomial. We have proven NP-hardness for GapSVPγ for

γ = 2(logn)1−ε
under the L∞ norm. �is is open for the L2 norm.

2. Finding a polynomial time reduction for super-constant approximate factors.

2.3.2 Algorithms for SVP
Lenstra-Lenstra-Lovasz (LLL) is a class of la�ice reduction algorithms. �ey are closely related to Gram–Schmidt

normalization and they run in polynomial time for a γ = 2n log logn/ logn
approximation. All known poly(n)

approximations to GapSVP run in time 2Θ(n)
. We also know how to obtain tradeo�s between the approximation

factor γ and our running time. Speci�cally we can solve GapSVPγ in time 2Θ(n/ log γ)
. Most of these algorithms

require 2Θ(n)
space, but recent works have tried to reduce the space complexity. Right now we do not know any way

that quantum algorithms can create asymptotic improvements for these problems other than a Grover’s quadratic

speedup.

2.4 Short Integer Solutions (SIS) problem
In this course we will base hardness on average-case assumptions that are implied by GapSVP / SIVP.

De�nition 2.7 (Short integer solutions (SIS)). SISn,m,q,β is de�ned with respect to la�ice dimension n, number of

instances m, modulus q, and noise bound β. Given a random A ∈ Zn×mq , no e�cient adversary can �nd a non-zero

x ∈ Zm such that Ax ≡ 0(modq) and ‖x‖2 ≤ β.

In general we want that β < qm as otherwise x = (q, 0, . . . , 0) would always be a solution. Whenm = Ω(n log q)
and β >

√
m, we know that a solution exists. �is follows from the fact that there are 2m possible {0, 1} valued

inputs for x while there are only qn outputs produced by these inputs. �us two distinct inputs must map to the

same output and their di�erence maps to zero.

2.4.1 SIS as a lattice problem
We can view SIS as average-case SVP on a la�ice de�ned by A ∈ Zn×mq . We de�ne:

L⊥(A) = {x ∈ Zm : Ax ≡ 0(modq)}

5

�en SIS is approximate SVP in L⊥(A). In coding theory terms, A is the parity check matrix.

�eorem 2.8. For anym = poly(n), any β > 0, and su�ciently large q > β ·poly(n), there is a probabilistic poly-time
(PPT) reduction from solving GapSVPγ or SIVPγ in the worst-case to solving SISn,m,q,β with non-negligible probability.

�ere are some tightness results about the above theorem:

1. Micciancio and Regev [MR04]: γ = β · Õ(
√
n) with q = βÕ(n

√
m) = nO(1)

2. Gentry-Peikert-Vaikuntanathan [GPV08]: same γ, but allows smaller q = β · Õ(
√
n)

We should view this as saying that the hardness of GapSVPγ / SIVPγ in the worst case implies that SIS is hard on

average.

6

CS 395T: Topics in Cryptography January 26, 2022

Lecture 3: Cryptographic Constructions from SIS

Lecturer: David Wu Scribe: Steven Cheng

3.1 Collision-Resistant Hash Functions from SIS

Using the SIS assumption, we can begin to construct various cryptographic primitives. We �rst examine the con-

struction of a collision-resistant hash function (CRHF).

De�nition 1.1 (Collision-Resistant). A keyed hash family H : K ×X → Y is collision-resistant if it satis�es the

following properties:

• Compressing: �e hash function compresses the number of inputs: |Y | < |X|.

• Collision-Resistant: All e�cient adversaries A can only �nd collisions with negligible probability:

Pr [k r← K; (x, x′)← A(k) : H(k, x) = H(k, x′) ∧ x 6= x′] = negl(λ)

CRHF from SIS. We can derive a CRHF directly from SIS. Let H : Zn×mq × {0, 1}m → Znq , where we set

m > dn log qe, be de�ned as H(A, x) = Ax (mod q). We can prove that H is collision resistant:

• Compressing: |Y | = |Znq | = qn and |X| = |{0, 1}m| = 2m. Taking the log of both, we get n log q < m,

which is true by de�nition.

• Collision Resistant: Suppose an adversary �nds x1, x2 ∈ {0, 1}m where x1 6= x2 andAx1 = Ax2. Rearrang-

ing, we getA(x1−x2) = 0, so x1−x2 is a solution. Furthermore, x1−x2 ∈ {−1, 0, 1}m, so ||x1−x2||2 ≤ m,

so we have found a solution for SISn,m,q,β (where β = dn log qe). �us, collision resistance follows from the

SIS assumption.

Local updates. Suppose we have a public hash H(A, x), where x is a bitstring: x ∈ {0, 1}m. We want to update

x 7→ x′ where x and x′ only di�er on a single index, i∗. Observe that

H(A, x) = A · x =

 | | · · · |
a1 a2 · · · am
| | · · · |

 ·

x1

x2

.

.

.

xm

 =

m∑
i=1

aixi

H(A, x′) =

m∑
i=1

aix
′
i =

m∑
i=1

aixi +

m∑
i=1

ai(x
′
i − xi) = H(A, x) + ai∗(x

′
i∗ − xi∗)

�us, we can easily �nd H(A, x′) by simply adding ai∗(x
′
i∗ − xi∗) to H(A, x), removing the need to fully compute

A · x′. Local updates can provide crucial speedups in situations where only small parts of large databases get updated

at a time, such as updating an entry in an address book.

3.2 Le�over Hash Lemma
De�nition 2.1 (Universality). A keyed hash function H : K ×X → Y is ε-universal if, for all x0, x1 ∈ X where

x0 6= x1,

7

Pr[k r← K : H(k, x0) = H(k, x1)] ≤ ε

When ε = 1/|Y |, then we say it is universal.

Universality of SIS. We can prove that the SIS hash function is universal. Let x0, x1 ∈ {0, 1}m with x0 6= x1 be

two arbitrary inputs such that H(A, x0) = H(A, x1) for some A ∈ Zn×mq . Let a1, . . . , an be the columns of A. �us,

H(A, x0)−H(A, x1) = Ax0 −Ax1 = A(x0 − x1) =

m∑
i=1

ai(x0,i − x1,i) = 0

Since x0 6= x1, they must di�er on some index j. Observe that x0,j − x1,j ∈ {−1, 1}, so it is always invertible mod q.

�us, the above relation holds only if

aj = (x0,j − x1,j)
−1
∑
i 6=j

ai(x0,i − x1,i)

Since all columns of A are sampled independently, then the right side of the relation is entirely independent of aj .
Viewing each element of aj , there is a

1
|q| chance that it matches the right side. �us, the probability of the relation

holding is:

Pr[A r← Zn×mq : A(x0 − x1) = 0]

=Pr[a1, . . . , an
r← Znq : aj = (x0,j − x1,j)

−1
∑
i 6=j

ai(x0,i − x1,i)]

=
1

qn
=

1

|Y |

�us, the SIS hash function is universal.

De�nition 2.2 (Guessing probability and min-entropy.) Let X be a random variable taking on values in a �nite set S.

�e guessing probability of X is

max
s∈S

Pr[X = s]

Further, we de�ne the min-entropy of X to be

H∞(X) = − log max
s∈S

Pr[X = s]

Intuitively, if X has k bits of entropy, then X has at least 2k possible values, with the most likely outcome appearing

with probability at most 2−k . In other words, we can think of X as roughly resembling a random k-bit string.

8

De�nition 2.3 (Statistical distance.) Let D0, D1 be distributions with a common �nite support S. �e statistical

distance between D0 and D1 is de�ned to be

∆ (D0, D1) =
1

2

∑
s∈S
|Pr[t r← D0 : t = s]− Pr[t r← D1 : t = s]|

If D0 and D1 are ε-close (that is, ∆(D0, D1) ≤ ε), then no adversary can distinguish between D0 and D1 with

advantage be�er than ε. When ε is negligible, then D0 and D1 are statistically indistinguishable.

Note that this di�ers from computational indistinguishability, which states that no e�cient adversary can distinguish

between the distributions.

Le�over Hash Lemma. Let H : K ×X → Y be an ε-universal hash function. Suppose x ∈ X is a random variable

with b bits of entropy. De�ne the following two distributions:

D0 : k r← K, y ← H(k, x); output (k, y)

D1 : k r← K, y r← Y ; output (k, y)

�e Le�over Hash Lemma (LHL) states that the statistical distance between these two distributions is at most

∆ (D0, D1) ≤ 1

2

√
|Y |
2b

+ (|Y |ε− 1)

When H is universal, then this reduces to

∆ (D0, D1) ≤ 1

2

√
|Y |
2b

+

(
|Y |
(

1

|Y |

)
− 1

)
=

1

2

√
|Y |
2b

Randomness extractor. LHL is o�en applied in se�ings where H is universal and |Y | = 2b−2λ
:

∆ (D0, D1) ≤ 1

2

√
|Y |
2k

=
1

2
· 1

2λ

In this se�ing, the distance between distributions is negligible, so (k,H(k, x)) is statistically indistinguishable from

(k, y) where y r← Y . �is is an example of a randomness extractor, where we are able to take the randomness from a

non-uniform but random variable x, and produce from it a uniform random value, H(k, x). However, this extraction

”costs” 2λ bits of entropy to perform.

We can apply randomness extractors to generate uniformly random cryptographic keys from non-uniform sources.

For example, consider H : Zn×m2 × {0, 1}m → Zn2 :

H(A, x) = Ax

Recall the DDH assumption, which tells us that gab, the result of a Di�e Hellman key exchange, looks random. �us,

we can use the binary representation of gab as a random but non-uniform variable with some min-entropy guarantee.

Applying LHL, we extract the randomness from gab and produce H(A, gab), which is suitable as a uniform random

key for symmetric encryption.

We can further apply LHL to the SIS hash function. For some random variable v ∈ {0, 1}m which has a min-

entropy guarantee (but does not need to be uniform), LHL tells us that H(A, v) = Av is uniform random when

m > n log q+2λ. Sincen is usually used as the security parameter when dealing with la�ices,m = Θ(n log q) su�ces.

Extending this via a hybrid argument, we can sample a random R r← {0, 1}m×m, and obtain AR which is statistically

close to a uniform random variable over Zn×mq . �is result will be useful in later constructions.

9

3.3 Commitments from SIS

De�nition 3.1 (Commitments). Recall that a commitment scheme consists of two functions:

• Setup(1λ)→ crs: Samples a common reference string from the security parameter, λ.

• Commit(crs, µ; r)→ σ: Commits to a message µ using the randomness r.

To open a commitment, we simply provide (µ, r), and a veri�er can check that σ = Commit(crs, µ; r). For this to be

secure, commitment schemes must also satisfy two properties:

• Hiding. Adversaries cannot distinguish between commitments of two di�erent messages. �at is,

{(crs, σ) : σ ← Commit(crs,m1)} ≈ {(crs, σ) : σ ← Commit(crs,m2)}

• Binding. For a random common reference string, adversaries cannot �nd (m1, r1) and (m2, r2) such that

Commit(crs,m1, r1) = Commit(crs,m2, r2).

Commitments can be either statistically or computationally hiding / binding, depending on whether the adversaries

are required to be e�cient or not.

Commitments from SIS. We can construct the following commitment scheme from SIS where n, q be la�ice

parameters and m = Θ(n log q).

• Setup(1λ): Sample A1, A2
r← Zn×mq . �e common reference string is simply (A1, A2).

• Commit((A1, A2), µ; r), where µ, r ∈ {0, 1}m: Output σ = A1m+A2r =
[
A1|A2

] [m
r

]
.

We can prove the two necessary properties for the SIS commitment scheme:

• Statistically Hiding. If m > 3n log q, then the scheme is statistically hiding. �e proof follows from LHL. For

r r← {0, 1}m, A2r is statisically indistinguishable from a uniform random value of Znq (by LHL), so A2r acts as

a one-time pad and entirely obscures A1m.

• Computational Binding. We can show that the scheme is computationally binding through a reduction to

SISn,2m,q,
√

2m. �us, suppose there exists an e�cient adversary A that can break the binding property. We

use A to construct B, an adversary for SIS:

1. �e SIS challenger samples A r← Zn×2m
q and sends it to B.

2. B separates A = [A1|A2] where A1, A2 ∈ Zn×mq , and provides the common reference string (A1, A2) to

A.

3. A breaks the binding property and provides σ ∈ Znq and two pairs (m1, r1), (m2, r2).

4. B sends the vector

[
m1 −m2

r1 − r2

]
to the adversary, and the game ends.

Let x =

[
m1 −m2

r1 − r2

]
, the vector that B answers with. If A succeeds, then

[
A1|A2

] [m1

r1

]
=
[
A1|A2

] [m2

r2

]
= σ.

A�er rearranging, we �nd

[
A1|A2

] [m1 −m2

r1 − r2

]
= Ax = 0. Furthermore, since m1,m2, r1, r2 ∈ {0, 1}m, then

10

x ∈ {−1, 0, 1}2m so it has norm ||x||2 ≤
√

2m. Finally, since the two messages that A provides must be di�erent,

then m1 −m2 6= 0 and so x is non-zero. �us, x is a valid SIS solution.

Parallels to Discrete Log. Recall Pedersen commitments from discrete log:

• Setup(1λ): Generate a prime order group G← GroupGen(1λ), and sample g, h r← G as the common reference

string.

• Commit((g, h), µ; r), where µ, r ∈ Zp: Output σ = gµhr .

Observe that, in Pedersen commitments, we obscure the message and randomness using exponents, while with SIS
commitments, we obscure the message and randomness through matrix multiplication:

Discrete Log SIS

g, h r← G −→ A1, A2
r← Zn×mq

gµ −→ A1µ
hr −→ A2r

Later on in this course, we will see many parallels between discrete log based systems and la�ice-based systems.

11

CS 395T: Topics in Cryptography January 31, 2022

Lecture 4: La�ice Trapdoors and Digital Signatures

Lecturer: David Wu Scribe: Je�rey Champion

4.1 Commitments from SIS and the ISIS Problem
Construction 4.1. �e following is a commitment scheme from SIS:

Setup(1λ): A1,A2
r← Zn×mq , crs = (A1,A2)

Commit(crs,m; r): σ = A1m+ A2r

Claim 4.2. Construction 1.1 is statistically hiding.

Proof. By LHL, we know that (A2,A2r) ≈ (A2,u). Since A1,A2 are independent

{(A1,A2), (A1m+ A2r)} ≈ {(A1,A2), (A1m+ u)} ≡ {(A1,A2),u}.

Claim 4.3. Construction 1.1 is computationally binding by SISn,2m,q,
√

2m.

Proof. Given the SIS challengeA = [A1|A2] and an adversaryA that breaks binding, adversaryB sets crs = (A1,A2)
and runs A. On output σ,m1, r1,m2, r2, B outputs x = [(m1 −m2)|(r1 − r2)]T to break SIS. Since each entry of x
is in {−1, 0, 1} and there are 2m entries we have ‖x‖ ≤

√
2m as desired.

Note that the scheme parallels Pederson commitments from discrete log where the matrix multiplication and addition

correspond to group exponentiation and multiplication, respectively.

Inhomogeneous SIS (ISIS): Given A r← Zn×mq , y r← Znq , �nd x such that Ax = y and ‖x‖2 ≤ β.

�is problem corresponds to �nding a short vector in the coset of a la�ice:

L⊥u (A) := c + L⊥(A),

where Ac = u and c is an arbitrary solution. We need this variant of SIS in order to make la�ice trapdoors. For the

rest of these notes, the default norm will be the `∞ norm, which is de�ned as ‖x‖∞ = maxi |xi|.

4.2 Lattice Trapdoors
A la�ice trapdoor function needs the following procedures:

• TrapGen(n,m, q, β)→ (A, tdA) where A ∈ Zn×mq

• fA(x): on input x ∈ Zmq , output Ax ∈ Znq

• f−1
A (tdA, y): on input y ∈ Znq , output x ∈ Zmq where Ax = y and ‖x‖ ≤ β

We now de�ne a “gadget matrix” as a useful tool in achieving trapdoor functions from la�ices. �ere are several

variations, but a useful choice is to set G = In ⊗
[
1 2 4 8 · · · 2blog qc]

, where ⊗ denotes the tensor product.

Note that G ∈ Zn×mq , where m = n log q.

A simple but very useful observation is that both SIS and ISIS are both easy with respect to G. For SIS, an

example solution would be v = 2e1 − e2, where ei’s refer to standard basis vectors. For ISIS, a solution would be

12

x = [BitDecomp(y1) · · ·BitDecomp(yn)]T . We refer to this particular solution as a function G−1 : Znq → Zmq where

G ·G−1(y) = y (∀y ∈ Znq).

We now wish to �nd a gadget trapdoor for a given matrix A ∈ Zn×mq , which is R ∈ Zm×mq such that AR = G and

‖R‖∞ = maxi,j rij is small. Having such an R allows us to solve ISIS with respect to A e�ciently, since we can

simply output x = R ·G−1(y), which will make Ax = y as desired. Let ‖R‖∞ = β, and note that

∥∥G−1(y)
∥∥
∞ = 1.

�is implies

∥∥R ·G−1(y)
∥∥
∞ ≤ βm.

We can now de�neTrapGen(n,m, q, β). First, sampleA r← Zn×mq , R r← {0, 1}m×m. �en, setA =

[
A

∣∣∣∣AR + G

]
and R =

[
−R

∣∣∣∣ Im]T . Note that G is a constant and (A,AR) ≈ (A,T) by the Le�over Hash Lemma, so A looks

uniform. We can see by inspection that AR = G and ‖R‖∞ = 1, as desired.

4.3 Digital Signatures fromLattice Trapdoors in theRandomOracleModel
Construction 4.4. �e following is a candidate signature scheme from la�ice trapdoors:

KeyGen(1λ): (A, tdA = R)← TrapGen(n,m, q, β); vk = A, sk = R (where AR = G)

Sign(sk,m): σ = R ·G−1(H(m))
Verify(vk,m, σ): check ‖σ‖ < β and Aσ = H(m)

Where we assume H : {0, 1}∗ → Znq is a random oracle. However, it turns out that doing this is not enough, because

this scheme is totally broken. In particular, an adversary can make a bunch of sign queries and compute G−1(H(m))
for each to construct a system of equations that will allow it to solve for R. In order to properly hide R, randomness

is needed when signing. �is can be accomplished by constructing a preimage sampleable trapdoor function.

De�nition 4.5. We say f : X → Y is a preimage sampleable trapdoor function if there exists e�ciently sampleable

D over X and a trapdoor inversion algorithm SamplePre where:

{x← D, y ← f(x) : (x, y)} ≈ {y r← Y, x← SamplePre(td, y) : (x, y)}

If our signing algorithm uses SamplePre in place of G−1
, Construction 3.1 is secure by an analogous argument to

RSA-FDH.

13

CS 395T: Topics in Cryptography Febuary 2, 2022

Lecture 5: Preimage-Sampleable Trapdoor Functions

Lecturer: David Wu Scribe: Yeonsoo Jeon

5.1 Constructing Preimage Sampleable Trapdoor functions from SIS

recall the SIS hash function

fA(x) := Ax (mod q)

where A ∈ Zn×mq and x ∈ Zmq . �en our goal is given target y ∈ Znq sample some x ∈ Zm such that Ax = y.

We want to decide some distribution over the preimages that we want to sample and it is independent to the

trapdoor information

recall that the SIS la�ice is de�ned as

L⊥(A) = {x ∈ Zm : Ax = 0 (mod q)}.

Its coset is also de�ned as

L⊥u (A) = c+ L⊥(A) = {x ∈ Zm : Ax = u}
where c ∈ Zmq and Ac = u.

Our challenge is to de�ne a suitable distribution over L⊥u (A) which is conducive for pre-image sampling. �at

is, given a trapdoor, sampling preimage must be e�cient and samples must not leak trapdoor. �is distribution is

typically a discrete Gaussian distribution. First we will de�ne discrete Gaussian distribution, then use the distribution

to construct such sampling processes.

5.2 Discrete Gaussian Distribution
De�nition 5.1 (Discrete Gaussian Distribution). For a parameter s > 0, we de�ne the Gaussian function over Rn
with width s as follows:

ρs(x) := exp(−π ‖x‖2 /s2)

ρs,c(x) := exp(−π ‖x− c‖2 /s2)

Discrete Gaussian over L centered at c:

DL,s,c(x) ∝

{
ρs,c(x) if x ∈ L
0 otherwise

Pr[x] =
ρs,c(x)∑

x∈L
ρs,c(x)

De�nition 5.2 (Truncated Discrete Gaussian Distribution).

Pr[x] ∝

{
ρs(x) if x ∈ L and ‖x‖ < β

0 otherwise

If β > ω(
√

log λ), truncated Gaussian distribution is statistically indistinguishable to discrete Gaussian distribu-

tion.

Figure 5.1 shows an example of discrete Gaussian distribution over Z2
. Discrete Gaussian has good properties

that are useful.

14

Figure 5.1: Discrete Gaussian distribution over Z2

• Rotational invariance over Rn
ρs(~x) =

∏
i∈[n]

ρs(xi)

• (Gaussian Convolution Lemma) Sum of discrete Gaussian is another discrete Gaussian

Gaussian Convolution Lemma is the property that we will use to implement our Gaussian sampling procedure.

5.3 Gram-Schmidt Orthogonalization
Recall Gram-Schmidt Orthogonalization from linear algebra. Let b1, . . . , bn ∈ Rd be a collection of vectors

with span(b1, . . . , bn) = V . �en the Gram-Schmidt orthogonalization process outputs b̃1, . . . , b̃n ∈ Rn where

span(b̃1, . . . , b̃n) = V and b̃i
ᵀ
b̃j = 0 for all i 6= j.

Algorithm 1 Gram-Schmidt Orthogonalization

Input b1, . . . , bn ∈ Rd with span(b1, . . . , bn) = V

Output b̃1, . . . , b̃n ∈ Rn where span(b̃1, . . . , b̃n) = V and b̃i
ᵀ
b̃j = 0 for all i 6= j

1: b̃1 ← b1
2: for each i = 2, . . . , n do
3: b̃i ← bi −

∑
j<i

bᵀi b̃j

b̃j
ᵀ
b̃j
· b̃j

4: end for

Note that B = [b1| · · · |bn] and B̃ = [b̃1| · · · |b̃n] span the same vector space over Rn, but do not necessarily

generate the same la�ice because b̃i is not necessarily an integer linear combination of b1, . . . , bn.

�e norm of the Gram-Schmidt vectors provides a bound on the minimum distance of a la�ice. Let B̃ = [b̃1| · · · |b̃n]
be the Gram-Schmidt basis. �en the following holds:

λ1(L(B)) ≥ min
i∈[n]

∥∥∥b̃i∥∥∥ .
To prove the statement, take any la�ice point Bx 6= 0 where x ∈ Zn. Let k be the largest index where xk 6= 0.

15

Consider the product

(Bx)ᵀb̃k =
∑
i≤k

xib
ᵀ
i b̃k = xkb

ᵀ
k b̃k = xk

∥∥∥b̃k∥∥∥2

since b̃k is orthogonal to b1, . . . , bk−1 and bᵀk b̃k =
∥∥∥b̃k∥∥∥2

. By Cauchy-Schwarz inequality (|uᵀv| ≤ ‖u‖ · ‖v‖), we

have

‖Bx‖
∥∥∥b̃k∥∥∥ ≥ |(Bx)ᵀb̃k| = |xk| ·

∥∥∥b̃k∥∥∥2

since xk ∈ Z and xk 6= 0.

�erefore,

‖Bx‖ ≥ min
i∈[n]

∥∥∥b̃i∥∥∥ .
5.4 Approach for Preimage Sampling
�eorem 5.3 (Gentry-Peikert-Vaikuntanathan). �ere is an e�cient algorithm that takes a basis B of a la�ice L =

L(B), a coset c+ L and a Gaussian width parameter s ≥
∥∥∥B̃∥∥∥ · ω(

√
log n) where

∥∥∥B̃∥∥∥ = max
i

∥∥∥b̃i∥∥∥
2
and outputs a

sample whose distribution is statistically close to Dc+L,s.

With the help of GPV theorem (we will cover the algorithm in the future lecture) we can construct the sampling

processes.

Forward Sampling : Sample x← DZm,s and output (x,Ax).

Reverse Sampling : y
R←− Znq , compute any solution z ∈ Zmq where Az = y,

Sample v ← DL⊥(A),s,−z and output (z + v, y).

We know that if x
R←→ {0, 1}m then (x,Ax)

s
≈ (x, u) where u

R←− Znq . However, now x is sampled from discrete

Gaussian distribution. �erefore, we need to show that for x← DZm,s, (x,Ax)
s
≈ (x, u) where u

R←− Znq . In general,

this statement does not hold. However, when s is su�ciently large, Ax
s
≈ Unif . How large s should be in order to

meet the condition is called ”smoothing parameter”.

16

CS 395T: Topics in Cryptography February 7, 2022

Lecture 6: Discrete Gaussian Sampling

Lecturer: David Wu Scribe: Nitesh Kartha

6.1 Preimage Sampleable Trapdoor Functions
Recall, that our goal is to construct preimage-sampleable trapdoor functions:

• Forward sampling: x← DZm,s

output: (x,Ax) [SIS Function]

• Backward sampling: y R←− Znq sample v ← DL⊥(A),s,−z where z ∈ Zmq such that Az = y;

output: (v + z, y) [note that A(v + z) = Av +Az = y since Av = 0]

We �rst need to show that the distribution of forward samples and backward samples are statistically indistin-

guishable for a signi�cantly large s. To help us, we will �rst introduce the concept of the smoothing parameter of a
la�ice.

Informally, the smoothing parameter of a lattice is the minimum amount of Gaussian noise that needs to be

added to ”smooth out” the discrete structure of a la�ice (i.e. the minimum width s > 0 such that every coset c+ L
has the same Gaussian mass). �e more formal de�nition we will use in class is de�ned below:

De�nition 6.1 (Smoothing parameter of a la�ice η). �e smoothing parameter is the minimum width parameter

s > 0 such that: For all c ∈ R2
: ρs,c(L) ∈ [1− negl(n), 1] · ρs(L).

It is denoted as η(L) and η(L) ≤ λn(L) · ω(
√

log n)

Note that you can simply consider the Gaussian mass of the fundamental parallel-piped created by the basis

vectors of the la�ice since everything in the la�ice is an invariant of this region.Using this de�nition, we will prove

the following claim:

Claim 6.2. Given A← Zn×mq and x← DZm,s Ax
s
≈ Uniform(Znq) when s > η(L⊥(A)) andm ≥ 3n log q

In order to help us in this proof, we will �rst prove this claim:

Claim 6.3. x mod L⊥(A)
s
≈ Uniform(Zm/L⊥(A))

Proof. Take any coset c + L⊥(A) Since x ← DZm,s, Pr[x ∈ c + L⊥(A)] ∝ ρs(c + L⊥(A)) by the de�nition of a

Discrete Gaussian. When s > η(L⊥(A)), it doesn’t ma�er whether you center the distribution at the origin or an

arbitrary point which means that ρs(c+ L⊥(A))
s
≈ ρs(L⊥(A)). Importantly, this does not depend on what c is; it

holds for all c ∈ Rn. �us, x mod L⊥(A) is uniform over Zm/L⊥(A).

We can also note thatZm/L⊥(A) ∼= Znq using the multiplication withA as the homomorphism (x+L⊥(A) 7→ Ax).

Alternatively, note that x ∈ Zmq 7→ Ax ∈ Znq and the kernel of that group homomorphism is L⊥(A) and the relation-

ship follows from group theory.

Also note that when m > 3n log(q), the le�over hash lemma states that {(A,Ax) : A
R←− Zn×mq , x

R←−
{0, 1}m}

s
≈ {(A, u) : A

R←− Zn×mq , u
R←− Znq }. More concretely, the statistical distance is q−n which means that Ax

is likely to map to the entirety of Znq .

�us we have shown that if we forward sample (x,Ax), Ax is indistinguishable from Uniform(Znq). We now

need to show that backward sampling is a Discrete Gaussian conditioned on Ax being a particular value.

17

Proof. Consider the distribution of x conditioned on a value y, Dx(x̂) : ρs(x̂)
ρs(z+L⊥(A))

where z : Az = y. �is is

equivalent to:
ρs,−z(x̂−z)
ρs,−z(L⊥(A))

based on the de�nitions of the Gaussian mass function. �is is equivalent to the Discrete

Gaussian DL⊥(A),s,−z(x̂− z) which is the distribution of v for the backward sampling technique.

If we write x = z+ v, then v = x− z and note that the distribution of v Dv(v̂) = Dx(v̂− z) = DL⊥(A),s,−z(v̂+
z − z) = DL⊥(A),s,−z(v̂). �

�us we have proven that the backward and forward sampling distributions are statistically indistinguishable.

Since this is su�cient to de�ne a preimage samplable trapdoor function, all that remains is actually sampling from a

Discrete Gaussian distribution.

6.2 Discrete Gaussian Sampling
A naive approach is to sample from a continuous Gaussian distribution over Rn and round to the nearest la�ice

point. However, this is incorrect and produces a distribution that is statistically far from the Discrete Gaussian. To

demonstrate this, we will consider the one-dimensional case but this problem ampli�es as the number of dimensions

and complexity increases.

Considering the one-dimensional case, L = Z, we simply have to look at the probability mass assigned to 0 in the

”rounded” Gaussian distribution to see how it di�ers from the Discrete Gaussian distribution:

In the ”rounded Gaussian” technique, consider y ← Gaussian(s), y will only round to 0 when it is in the range

[−1/2, 1/2).

Pr[y ∈ [−1/2, 1/2)] =
1

s

∫ 1/2

−1/2

ρs(y) dy

where s is the normalization form and is equal to

∫∞
−∞ ρs(y) dy.

Note that this integral can be simpli�ed to:

2

s

∫ 1/2

0

ρs(y) dy

And using the change of variable with t =
√
πy
s , we get:

2√
π

∫ √π/2s
0

e−t
2

dt

since ρs(y) = e
−πy2
s . �is integral is equivalent to erf(

√
π

2s). Note that erf(x) is equivalent to
2√
π

(x − Ω(x3))

using its Taylor expansion. Plugging in our result then yields
1
s − Ω(1

s3).

For the discrete Gaussian, it is a bit more complicated to get a simple answer as it requires the use of Fourier

transforms. For a more detailed explanation, refer to the lecture notes. Below is a simpli�ed discussion.

We can note that:

D(0) =
ρs(0)∑
x∈Z ρs(x)

=
1∑

x∈Z ρs(x)

�e denominator

∑
x∈Z ρs(x) is equivalent to

∑
y∈Z ρ1/s(y) from the Fourier transform. �is summation is

equivalent to

∑
y∈Z s · e−πs

2y2
which is simpli�ed to s+ s

∑
y 6=0 e

−πs2y2 = s · (1 + negl(λ). �us, the overall result

is negligible.

18

However, the ”rounded Gaussian” distribution had probability mass of 0 to be non-negligible, thus showing that

this naive approach is incorrect.

Finally, we will brie�y go over how to sample from discrete Gaussians, with a more in-depth explanation in the

next lecture. Recall the gadget trapdoor R is a ”short” matrix (i.e. the elements of R are small) where AR = G and

we will use R to sample from the discrete Gaussian DL⊥(A),s where s > s1(R) · ω(
√

log n) and s1 is the largest

single value of R and s1 ≤ m:

[A|AR+G]

[
−R
In

]
(6.1)

19

CS 395T: Topics in Cryptography February 9, 2022

Lecture 7: Discrete Gaussian Sampling

Lecturer: David Wu Scribe: Kristin Sheridan

7.1 Review of Gaussian sampling
Goal: preimage sampling

�e following should be statistically indistinguishable when s is su�ciently large compared to the smoothing

parameter

• forward sampling: x← DZn,s, y ← Ax: output (x, y)

• reverse sampling: y ← Znq , v ← DL⊥(A),s,−z , where Az = y for arbitrary x: output (v + z, y)

Today’s focus: how to actually sample from a discrete Gaussian to achieve this

7.2 Rejection sampling
Goal: Sample from DZ,s,c

• Recall from last time that rounding a sample from the continuous distribution can get us something far from

the correct distribution even in one dimension

• Instead, use rejection sampling (be�er for lower dimensions)

1. Sample x← Z ∩ [−t · s+ c, t · s+ c]

– idea behind this: “truncate the tails” of the Gaussian distribution, a�er t standard deviations from the

center

– When we do this, we will set t(n) := ω(
√

log n)

– By Gaussian tail bounds, Prx←DZ,x,c [|x − c| > t · s] ≤ 2e−πt
2

, which is negligible in n when

t = ω(
√

log n) and thus “cu�ing the tail o�” only marginally changes the distribution

– Now we have a random integer from this range, but we need to convert to match the Gaussian

distribution

2. Output x with probability ρs,c(x), when normalized (using the regular Gaussian density function);

otherwise reject and restart

• Now we want to check that this actually works

1. Does this terminate?

– Modify the algorithm to try at most t(n) · ω(
√

log n) times and output 0 if you have not succeeded

at that point

– How do we show we’re unlikely to hit the “just return 0” point?

– If on a given round we have x ∈ [c− s, c+ s], the probability that we output at this round is at least

e−πs
2/s2 = e−π = O(1), as it is at least the probability that we accept at c− s or at c+ s, the least

likely acceptance points in this range

– We also have Prx←[−ts+c,ts+c][x ∈ [c−s, c+s]] = 2s
2ts = 1

t , so we are fairly likely to pick something

in this small range

– �us, we terminate on a given round with probability at least O(1/t), and Cherno� bounds give us

that a�er t(n) ·O(log λ) iterations, we will output something with probability at least 1− negl(λ)

20

7.3 GPV algorithm
�eorem 7.1. Given a basis B for a L = L(B), there exists an e�cient algorithm that samples from a distribution
statistically close to DL,s,c for any s ≥ |B̃|| · ω(

√
log n) (namely the GPV algorithm given below)

Below we discuss the GPV algorithm, which samples from DL,s,c for an arbitrary L = L(B) (as long as

s ≥ ||B̃||ω(
√

log n), where B̃ is the Graham-Schmidt normalization of B. �e proof of this algorithm is given in the

extra lecture notes but wasn’t discussed in lecture.

1. Let vn ← 0n, cn ← c; for i = n, n− 1, . . . , 1

(a) Compute c′i ←
cTi b̃i

b̃Ti b̃i
∈ R (ci projected onto ith basis vector)

Also compute s′i ← s
||b̃i||

(b) Sample zi ← DZ,s′i,c′i
(c) Update ci−1 ← ci − zibi and vi−1 ← vi + zibi

2. Output v0

Intuitive sense of what this algorithm is doing:

• We have the Graham Schmidt orthogonal basis of the la�ice; we start o� with our estimate at 0n, then we will

repeatedly adjust it based on the outcome of repeated Gaussian sampling

• To do this, we are essentially picking coe�cients zi to place on the original basis vectors so that vi =
∑
i zibi

• To select the coe�cient zi, we �rst project the “current center” onto the ith normalized basis vector and

essentially normalize s to the length of the original ith basis vector

• �en sample the coe�cient from the discrete Gaussian on Z, with the projected center and normalized variance

• Finally, we shi� the center over by the negative of the amount we are adjusting our output value by

7.4 Using the GPV algorithm for signatures
Now we review the signature scheme we discussed before in the context of our new algorithms. Recall

G =

1 2 · · · log q 0 0 · · · 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 2 · · · log q 0 · · · 0 0 0 · · · 0
· ·
0 0 · · · 0 0 · · · 0 0 0 · · · 0 1 2 · · · log q

and gT =

[
1 2 · · · log q

]
(ie G = gT ⊗ In). We also have AR = G where R ∈ {0, 1}m×m.

• First, we will sample z ← DL⊥y (G),s

– To do this, notice that if Gx = y, then we can divide x and y into several vectors of length log q that are

all concatenated together to form x and y; denote the ith of these vectors by xi and yi

– �is means gTxi = yi

– �en we can use GPV to sample fromDL⊥y (gT),s (ie sample some xi such that gTxi = yi) and concatenate

the results together

• To use GPV this we need to �nd a basis for L⊥y (gT)

21

– We have that DL⊥y (gT),s is a re-centered version of DL⊥(gT),s, so we can use

B =

2 0 0 · · · 0 0
−1 2 0 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · ·
0 0 0 · · · −1 2

as a short basis for L⊥(gT) which is su�cient (recalling that this la�ice is the set of x such that gTx = 0)

– �e above basis has as its Graham-Schmidt norm B̃ = 2In, which means ||B̃|| = 2

– �us, we can use GPV if s > ω(
√

log n)

• Now we have that ARx = Gx = y, so we could try using Rx as our output value

– However, while the distribution of Rx is a Gaussian, its covariance is not the same in every direction (ie

it is not spherical)

– In fact, it has covariance matrix s2RRT , so it doesn’t look like the forward sampling

– One idea to make this look more like forward sampling would be to change the forward sampling method

to have this covariance, however this is still an issue as we can recover RRT if we see enough signatures

and this has the same problem as our original scheme proposal

To �x this, we’ll use the following Gaussian convolution lemma [Pei 11]

Lemma 7.2. (Gaussian convolution lemma - informal) Under mild conditions, sum of two discrete Gaussians is a discrete
Gaussian, and moreover the covariances add.

• So far, we have sampled x from the appropriate discrete Gaussian with covariance s2RRT such that Ax = y,

and we are looking to just correct the covariance of the random variable

• We will sample a perturbation p ∈ Zm with covariance ŝ2I − s2RRT , where Ap = 0

– Here ŝ ≥ s · s1(R), where s1(R) is the largest singular value of R (this ensures we get that ŝ2I − s2RRT

to be positive de�nite, a necessary condition of a covariance matrix)

• �en we can output x+ p, and the overall covariance is s2RRT + ŝ2I − s2RRT = ŝ2I , using the Gaussian

convolution lemma

• Notably, this does change the output value ofA(p+x) - we can �x this by picking p �rst and then sampling x such

thatAx = y−Ap instead ofAx = y, leaving us withA(p+Rx) = Ap+ARx = Ap+Gx = Ap+(y−Ap) = y

Summary of the overall algorithm we now have:

1. Sample p← DZm,ŝ2I−s2RRT

2. Sample x← DL⊥(G),s,y−Ap

3. Output p+Rx

�e second homework problem will look at the GPV scheme using the sampling method and �nd an error with

the version we’ve talked about so far. As a reminder, the scheme is as follows:

Setup: vk = A, sk = B (where B is a short basis for A)

Sign: Find H(m) and sample x← DL⊥
H(m)

(A),s, output x

Verify: Check that Ax = H(m) and ||x|| ≤ β

22

CS 395T: Topics in Cryptography February 14, 2022

Lecture 8: Learning With Errors

Lecturer: David Wu Scribe: Steven Xu

�is lecture, we introduced the Learning With Errors (LWE) problem and used it to build public key encryption.

8.1 Basics of LWE

De�nition 8.1 (Learning with Errors). Let λ be a security parameter and n = n(λ), m = m(λ), and q = q(λ) be

la�ice parameters. Also, let χ be an error distribution over Zq . χ is typically a discrete Gaussian so that samples are

generally short.

�e LWEn,m,q,χ assumption states that for A r← Zn×mq , s r← Znq , and e r← χ, the distributions

(A, sTA + eT) and (A,uT) for u r← Zmq

are computationally indistinguishable. �e vector s is commonly referred to as the secret, and the vector e is known

as the error.

Intuitively, the LWE assumption states that a noisy random linear combinations of n vectors in Zm are indistin-

guishable from random. For m < n, LWE holds since the image of A (under le� multiplication by row vectors) is

almost always the entire space of Zm, so multiplying by a random vector yields a random vector.

But for m > n, the image of A is a strict subspace of Zm. If there were no error, we’d be able to use Gaussian

elimination to check of sTA is in the image of A, and if we were working in the reals, we’d be able to use linear

regression to check the likelyhood that sTA + e was sampled from random. Typically, we take m � n to be

su�ciently large so that the secret vector is uniquely determined.

8.2 Properties of LWE

Claim 8.2 (SIS from LWE). LWEn,m,q,χ implies SISn,m,q,β .

Proof. We will prove the contrapositive. Suppose SIS is easy for n,m, q, β. �en we can use our SIS solver to �nd a

x ∈ Zmq such that Ax = 0 and ||x|| < β. We can use the short solution x to “cancel” our secret term and compute

(sTA + eT)x = sT (Ax) + eTx = eTx. However, ||eTx|| ≤ β||e|| � q, but for a uniformly sampled u r← Zmq , uTx
is unlikely to be short, allowing us to solve LWE.

Another notable property is that LWE is hard even if the secret s is sampled from a discrete Gaussian distribution.

More precisely, if LWE is hard for s r← Znq , then LWE is also hard for s r← χ′, where χ′ is some discrete Gaussian

over Znq of su�ciently large width. Importantly, this means that LWE is hard even when the secret s is short.

�ere are two problems associated with LWE—the decision problem, which the LWE assumption states directly is

hard, and the search problem, where the goal is to recover s given (A, sTA + eT). More precisely, the goal of the

search problem is to �nd the vector

v ∈ L(AT) =
{
AT s

∣∣ s ∈ Znq
}

+ qZm

which is closest to some given point z, where z would be our sTA + eT transposed. Note that this is an instance of

the bounded distance decoding problem over the la�ice L(AT). �ere is a reduction from search LWE to decision

LWE.

Finally, there exists a worst case quantum reduction from GapSVP to LWE. �is means that given a quantum

algorithm for solving average case LWE, there exists a quantum algorithm for solving worst case GapSVP. However,

there are certain partial results giving classical worst case reductions for restricted parameters regimes.

23

Proposition 8.3. For anym = poly(n), q < 2poly(n) and some discrete gaussian χ with values bounded by β, solving
LWEn,m,q,χ on a quantum computer is at least as hard as solving GapSVPγ on a quantum computer for an arbitrary n
dimensional la�ice with approximation factor γ = Õ(nq/β).

8.3 Symmetric Encryption with LWE

For our symmetric encryption scheme, we will encrypt a single bit (M = {0, 1}). �e idea behind the symmetric

encryption scheme is that we’ll take m = 1, our LWE secret s to be our secret key, and we’ll use sTA + e to hide our

single bit.

Let µ be our message. To encrypt, we’ll add bq/2c to sTA + e if µ = 1 and 0 if µ = 0. Our encrypted message

is then (A, sTA + e + µ bq/2c). To decrypt, we’ll subtract sTA from sTA + e + µ bq/2c to get d = e + µ bq/2c.
Since e is small, d is approximately just µ bq/2c. �us we’ll decrypt to 0 if d is closer to 0 and 1 if d is closer to bq/2c
in the ring Zq . �e algorithm is demonstrated in the diagram below.

More precisely, the LWE symmetric encryption scheme works as follows.

Construction 8.4 (Symmetric encryption from LWE). Let λ be a security parameter and n = n(λ), m = m(λ), and

q = q(λ) be la�ice parameters. We construct our symmetric encryption scheme with message spaceM = {0, 1} as

follows:

• Setup(1n): Sample s r← Znq . �is is our secret key.

• Encrypt(s, µ): Sample A r← Znq and e r← χ. Output c = (A, sTA + e+ µ bq/2c) as our ciphertext.

• Decrypt(s, (c1, c2)): Output µ = 0 if −q/4 ≤ c2 − sT c1 < q/4 and 1 otherwise.

If (c1, c2) = (A, sTA+e+µ bq/2c), then c2− sT c1 = e+µ bq/2c = d, so our decryption is correct by the logic

from earlier. For security, we have (A, sTA + e) ≈ (A, r) ≡ (A, r + µ bq/2c) ≈ (A, sTA + e+ µ bq/2c), where

r r← Zq . But (A, sTA + e) is the encryption of 0 and (A, sTA + e+ µ bq/2c) is the encryption of 1, demonstrating

that they are indistinguishable. Note that (A, r) ≡ (A, r + µ bq/2c) since r is uniformly random over Zq , and the

shi� of a uniformly random value is still uniformly random.

�is encryption scheme is extremely ine�cient. It takes n bits to encrypt a single bit, where n is the security

parameter (the size of the key). One possible improvement is to split the ring of Zq into p disjoint parts rather than

24

just 2 parts in order to encrypt p values. However, that improvement still isn’t very e�cient, and there exist other

optimizations for this encryption scheme which are asymptotically optimal.

Note that this encryption scheme is additively homomorphic. �at is, for two ciphertexts (A1, s
TA1 + e1 +

µ1 bq/2c) and (A2, s
TA2 + e2 + µ2 bq/2c), their sum (mod q) is

(A1 + A2, s
T (A1 + A2) + (e1 + e2) + (µ1 + µ2) bq/2c)

which is a ciphertext of µ1 + µ2 (mod 2). However, care must be taken to make sure magnitude of the error term

e1 + e2 does not get too big. More precisely, taking into account rounding error, we must have |e1 + e2 + 1| < q/4
for the addition to work correctly.

8.4 Public Key Encryption with LWE

In order to build a public key encryption scheme, we will take advantage of the fact that symmetric LWE encryption

is additively homomorphic. �e following scheme is called primal Regev encryption. �e public key is a set m of

encryptions of 0s in symmetric LWE, and the private key is just the secret key from symmetric LWE.

To encrypt, a user will choose a random subset of the encryptions of 0s and compute their sum, yielding another

encryption of 0. �en if their message is 1, they will add in bq/2c to the second term of the sum, turning the encryption

of 0 into an encryption of 1. �e main idea is that the subset sum acts as a seemingly fresh encryption of 0 which

then hides the message.

More precisely, the primal Regev encryption scheme works as follows.

Construction 8.5 (Public key encryption from LWE). Let λ be a security parameter and n = n(λ), m = m(λ), and

q = q(λ) be la�ice parameters. We construct our public key encryption scheme with message spaceM = {0, 1} as

follows:

• Setup(1n): Sample s r← Znq , A r← Zn×mq , and e r← χm. Our secret key is s, and our public key is (A, sTA+eT).

• Encrypt((A, sTA+eT), µ): Sample r r← {0, 1}m, and output (Ar, (sTA+eT)r+µ bq/2c) for the ciphertext.

• Decrypt(s, (c1, c2)): Output µ = 0 if −q/4 ≤ c2 − sT c1 < q/4 and 1 otherwise.

For correctness, if we have (c1, c2) = (Ar, (sTA + eT)r + µ bq/2c), then

c2 − sT c1 = (sTA + eT)r + µ bq/2c − sTAr = eT r + µ bq/2c

which from our analysis of symmetric LWE, we know will successfully decrypt if |eT r| < q/4.

Claim 8.6. �e above construction is semantically secure.

Proof. We begin by de�ning a sequence of hybrid arguments.

• In Hyb0, the adversary sees (A, sTA + eT ,Ar, (sTA + eT)r + µ bq/2c). �e �rst two terms are the public

key, and the last two terms are an encryption of µ generated using the public key.

• In Hyb1, the adversary sees (A,uT ,Ar,uT r + µ bq/2c) for some u r← Zmq .

• In Hyb2, the adversary sees (A,uT , z1, z2 +µ bq/2c), where u is the same as in Hyb1, z1
r← Zmq , and z2

r← Zq .

Hyb0 and Hyb1 are indistinguishable because by LWE, sTA + eT is indistinguishable from random. Hyb1 and Hyb2

are indistinguishable because by the le�over hash lemma, we have that [AT | u]T r is indistinguishable from random

since A, uT , and r are uniform random. Note that this requiresm be Ω(n log q). �en since (A,uT , z1, z2 +µ bq/2c)
clearly hides µ, our public key encryption scheme is secure.

25

CS 395T: Topics in Cryptography February 16, 2022

Lecture 9: Fully Homomorphic Encryption

Lecturer: David Wu Scribe: Garre� Gu

9.1 Fully Homomorphic Encryption
We begin by de�ning Fully Homomorphic Encryption (FHE). For over 30 years, FHE was considered the ”holy grail of

cryptography”.

De�nition 9.1. Suppose we have two participants, Alice and Bob. Alice has a message and calculates a ciphertext

ct ∈ Enc(pk, µ), then sends this ciphertext to Bob. A Fully Homomorphic Encryption Scheme allows Bob to

calculate Enc(pk, f(µ)) for arbitrary function f .

As it turns out, we have already seen an additively homomorphic encryption scheme, ElGamal.

Recall that the public key in ElGamal is g, h = gα where α is secret and g generates a cyclic group of order q.

�en encryption of µ1 is calculated by sampling random r1 ∈ Zq and calculating

gr1 , hr1gµ1
(9.1)

If we obtained another ciphertext gr2 , hr2gµ2
, we can calculate a ciphertext for µ1 + µ2 by simply multiplying the

corresponding elements to obtain

gr1+r2 , hr1+r2gµ1+µ2
(9.2)

and we’re done!

However, ElGamal is not multiplicatively homomorphic (as far as we know). We would like to get an encryption

scheme that is both additively and multiplicatively homomorphic over Z2, since this su�ces to evaluate arbitrary
Boolean gates. Addition corresponds to an XOR gate in Z2 and multiplicatioon corresonds to an AND gate.

We can express any function over Zn2 as a circuit consisting of XOR/AND gates, then if we have an encryption

scheme that is both additively and multiplicatively homomorphic over Z2, we can evaluate this Boolean circuit to

obtain the encryption of f(µ).

�e �rst Fully Homomorphic Encryption Scheme was created by a PhD student named Craig Gentry. His scheme

consisted of two steps:

1. Build a somewhat homomorphic encryption scheme (SWHE). �is scheme supports a bounded number

of homomorphic operations.

2. Bootstrap this SWHE scheme into an FHE scheme by ”refreshing” the ciphertext. �is can be done if the SWHE

can perform enough operations to evaluate its own decryption circuit, with an additional circular security

assumption.

9.2 Somewhere Homomorphic Encryption from LWE
Today we will focus on building a SWHE. We begin with Regev’s encryption. Recall that Regev’s encryption scheme

has public key

A =

[
Ā

s̄T Ā+ eT

]
(9.3)

where

Ā r← Zn×m̄q

s̄ r← Znq

e← xm̄

26

and the secret key is

s =

[
−s̄
1

]
(9.4)

�en

sTA = −s̄T Ā+ s̄T Ā+ eT

= et

≈ 0

Now, to obtain a ciphertext, we �rst sample

r r← {0, 1}m (9.5)

and calculate

c← Ar +

[
0n−1

q/2 · µ

]
(9.6)

Decryption is then performed by multiplying the secret key with the ciphertext:

sT c = sTAr + sT
[

0n−1

q/2 · µ

]
= eT r +

q

2
· µ

We can then obtain the value of µ using rounding.

We will begin by extending the ciphertext into a matrix. First we describe a bogus encryption scheme that has a

lot of nice intuitions if we ignore the error, and we will later discuss how to handle the error.

First we extend the matrix A into a square matrix.

Â =

[
A

0(n−m)×m

]
∈ Zm×mq (9.7)

We will also pad the key accordingly.

ŝ =

[
s

0m−n

]
∈ Zmq (9.8)

Now note

ŝT Â = sTA = eT (9.9)

To encrypt, �rst sample

R r← {0, 1}m×m (9.10)

then compute

C ← Â+ µ ·
⌊q

2

⌉
·

[
In 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

]
(9.11)

�en decryption is still performed by multiplying the secret key with the ciphertext.

ŝTC = ŝT ÂR+ µ ·
⌊q

2

⌉
· ŝ

[
In 0

0 0

]
= eTR+ µ ·

⌊q
2

⌉
· ŝT

27

Now, if we ignored the error term, we would end up with the equation

ŝTC = µ ·
⌊q

2

⌉
· ŝT (9.12)

Now, if we temporarily ignore the

⌊
q
2

⌉
term, then ŝ is a le� eigenvector of C with associated message equal to the

message!

Now suppose we have two ciphertexts,

ŝTC1 = µ1 · ŝT

ŝTC2 = µ2 · ŝT

�en we have additive homomorphism:

ŝT (C1 + C2) = ŝTC1 + ŝTC2

= (µ1 + µ2)ŝT

And multiplicative homomorphism:

ŝTC1C2 = µ1ŝ
TC2

= µ1µ2ŝ
T

We get both additive and multiplicative homormorphism from the additive and multiplicative properties of an

eigenvector/eigenvalue system.

But the catch is that we ignored the error and

⌊
q
2

⌉
to get these properties, so we really haven’t done anything

since the error is important for security in LWE.

If we did include the error, we would run into an issue.

Adding the two ciphertexts together, we get

ŝT (C1 + C2) = eT (R1 +R2) + (µ1 + µ2) ·
⌊q

2

⌉
· ŝT (9.13)

�is is �ne since we are simply adding the error terms together, so our total error does not increase by much.

However, if we tried to multiply two ciphertexts together, we would get

ŝTC1C2 = (etR1 + µ1 ·
⌊q

2

⌉
· (̂s)T)C2

= eTR1C2 + µ1µ2 ·
⌊q

2

⌉
· ŝT + µ1 ·

⌊q
2

⌉
· eTR2

�is is bad because both eTR1C2 and µ1 ·
⌊
q
2

⌉
· eTR2 are both large, meaning our noise blows up.

But we have a mechanism of compressing a matrix while preserving matrix products, namely the G matrix.

Note that

G−1 : Znq → Zmq
G ·G−1(v) = v ∀v ∈ Znq
||G−1(v)||∞ = 1

9.3 Gentry-Sahai-Waters FHE
Now we have everything we need to construct Gentry-Sahai-Waters FHE (GSW). �e setup is identical to Regev’s

Encryption. �e encryption is performed as below:

R r← {0, 1}m×m

C ← AR+ µ ·G

28

And decryption is performed as below:

sTC = sTAR+ µ · sTG

= (eTR+ µ · sTG)G−1(
q

2
· In)

= eTRG−1(
q

2
· In) + µ · sT · q

2
In

Now suppose e comes from a bounded Gaussian distribution with bound B, then the resulting decryption noise

will be B · n2
. Since we require the noise to be less than q/4, it su�ces to use a value of q > 4Bm2

.

�e security properties are identical to Regev’s Encryption.

Now we will show that GSW is homomorphic. Suppose

C1 = AR1 + µ1G

C2 = AR2 + µ2G

�en

C1 + C2 = A(R1 +R2) + (µ1 + µ2) ·G

So the scheme is additively homomorphic with negligible change in noise.

Additionally,

C1G
−1(C2) = (AR1 + µ1G)G−1(C2)

= AR1G
−1(C2) + µ1 · C2

= AR1G
−1(C2) + µ1AR2 + µ1µ2G

= A[R1G
−1(C2) + µ1R2] + µ1µ2G

�en the randomness accumulated through multiplication is

||Rx||∞ ≤ m · ||R1||+ ||R2|| (9.14)

which is small.

So a�er d multiplications, our noise increases by a factor of mO(d)
. We would then have to set q ≈ mO(d)

or

log(q) ≈ d log(m) (9.15)

�erefore the number of bits we need to represent the modulus is proportional to the multiplicative depth we

would like to support.

29

CS 395T: Topics in Cryptography February 21, 2022

Lecture 10: FHE Bootstrapping

Lecturer: David Wu Scribe: Rachit Garg

In the last lecture, we saw how to construct a Somewhat Homomorphic Encryption Scheme (SWHE). �is

construction supported bounded depth computation where the LWE modulus q > mO(d)
, where d is the multiplicative

depth of the computation. Additionally, if the depth of the circuit is ω(1), we would require a super-polynomial

modulus and a stronger assumption. In this lecture, we will see how to obtain Fully Homomorphic Encryption (FHE).

We will study about Gentry’s idea on bootstrapping.

High Level Idea Gentry proposed the idea of refreshing ciphertexts (re-encryption) to reduce noise in the eval-

uated ciphertexts. Let’s say we compute a function f homomorphically on a ciphertext ct (with noise B). By our

homomorphic evaluation, we end up with ctf(x) where the noise is B ·mO(d)
. Our refresh procedure would allow

us to perform a public operation on ctf(x) and output ct′f(x) with noise B′ = Bpoly(n). If we have such a refresh

procedure, then we can refresh when our ciphertexts become to big and thus eventually perform unbounded depth

computation.

To see how to achieve this, suppose we have a ciphertext ct that encrypts x, i.e. Decrypt(sk, ct) = x. We de�ne

a boolean circuit Cct : {0, 1}n log q → {0, 1}, where Cct(sk) = Decrypt(sk, ct). Suppose we publish the public

parameters, Encrypt(pk, sk) and homomorphically compute the boolean circuit Cct on Encrypt(pk, sk), i.e. we output

the computation Encrypt(pk, Cct(sk)) which is equal to Encrypt(pk, x). We note the properties that we want from

such a procedure. Let’s assume that our SWHE scheme can support d levels of computation.

• �e public parameters should post a fresh encryption of the secret key (with noise B). If the homomorphic

evaluation of circuit Cct consumes d′ < d levels, then the refreshed ciphertext can still support d− d′ levels of

computation. Arguing that Cct can be computed in d′ < d levels will be the main challenge we face in this

lecture.

• �e security requires that the scheme should be secure even if the public key includes a copy of the decryption

key. �is requires us to make a circular security assumption. (Open �estion: Get FHE without circular security

from LWE - without going through the route of indistinguishability obfuscation).

10.1 GSW Encryption
Let’s take a closer look on how to achieve bootstrapping for GSW encryption.

Setup: Set pk = A ∈ Zn×mq and sk = s ∈ Znq where s>A = e> such that e← χm (χm denotes the guassian error

distribution and consists of small values with high probability).

Encrypt(pk, µ ∈ {0, 1}): We compute C ← AR+ µ ·G.

Decrypt(sk, C): Compute s>C and round.

Correctness Speci�cally, s>C = s>AR + µ · s>G = e>R + µ · s>G. Note that s>G = [−s̃>|1]G and we can

analyze the last column to observe if it’s closer to 0 or q/2 to decide if the message is 0 or 1.

Analyzing the depth of the decryption circuit Consider that our scheme can support multiplications and

additions and circuits with depth d, i.e. q > mO(d)
. We now examine the depth of implementing GSW decryption.

Since we only need to examine depth, we perform the computation s>C = s>[C1| . . . |Cm] in parallel and focus on

evaluating one column. Note that this simpli�cation does not increase the depth. Let the decryption circuit take in

input s ∈ Znq has hardwired cm ∈ Znq and computes round(s>cm mod q).

30

• We can write s>cm =
∑n
i=1

∑dlog qe
j=0 si,j · (2j · cm,i mod q) where si,j denotes the jth bit of ith component

of s, cm,i denotes the binary representation of the ith component of cm.

• Since cm is available during setup of the circuit and 2j simply denotes the le� shi� operation. (2j ·cm,i mod q)
can be hardwired in the circuit.

• si,j · (2j · cm,i mod q) denotes one AND gate operation on q bits.

• Computing c>cm requires computing ndlog qe additions on q bits. Using an addition tree, computing n
additions on values over k bits can be performed in O(log n+ log k) depth. �us the full computation can be

performed in O(log n+ log log q) depth.

• Finally, we need to compute the modulo operation i.e. s>cm mod q. If q is a power of two, this is easy and

just involves ignoring the higher order bits. We can also do this by brute force, i.e. subtract our expression by

atmost ndlog qe multiples of q. �is is because s>cm is the addition of ndlog qe values. We can compute all

possible multiples of q and set it up so that we choose the one that is within Zq .
Note that selection is a tree of AND gates and would also take computation depth O(log n+ log log q).

• Rounding just involves picking the most signi�cant bit and outpu�ing it. Since we set q < 2n (for security), the

�nal depth of the circuit is O(log n+ log log q) and thus O(log n).

For correctness, we need to satisfy that q ∼ mO(logn)
. �is we can easily set and achieve full FHE functionality from

LWE and a circular security assumption. �e caveat in our construction is that we need to set q > mO(logn)
i.e. super

polynomial in the security parameter. �is means that we rely on worst case hardness of GapSVPγ where γ is super

polynomial (the reduction sets the γ dependent on the modulus-to-noise ratio). �is means we need to rely on a

stronger assumption than regular public key encryption. Next, we see how to do be�er than this.

10.2 FHE with Polynomial Modulus
We show that we can do be�er by exploiting the asymmetric noise growth of GSW multiplication. Recall that if

C1 = AR1 + µ1 ·G and C2 = AR2 + µ2 ·G.

�en Cx = C1G
−1(C2) = A(R1G

−1(C2) + µ1R2) + µ1µ2G. Let Rx = R1G
−1(C2) + µ1R2 and ‖Rx‖∞ ≤

‖R1‖∞ · poly(m) + ‖R2‖∞.

Suppose we have C1, . . . , Ct with noise R1, . . . , Rt where for every i ∈ [t], ‖Ri‖∞ ≤ B. Consider any sequence

of homomorphic multiplication which involves multiplication with one of C1, . . . , Ct. �e noise accumulation a�er

T multiplications is bounded by T · B · poly(m). Each multiplication increases noise by an additive factor.

Key Takeaway If input to every multiplication is a fresh ciphertext, then noise growth is additive, not multiplicative

in the depth! Asymmetric noise growth is thus extremely useful both theoretically (relying on weaker assumptions)

and practically (more e�cient PIR (Private Information Retrieval) protocls). But how to exploit this for GSW

bootstrapping? �e analsysis we performed above requires computing inner products. Idea - use Branching Programs!

Layered Branching Programs Any graph that can be decomposed into layers, where there are edges between

adjacent layers. On each layer, the program reads some bit of the input (Only one bit is read, and this is same across

all nodes in the layer). On the �nal layer, we end up at either an accepting node that outputs 1 or a rejecting node

that outputs 0.

�ese are useful in complexity theory for capturing space-bounded computations where the width of the branching

program denotes the spcae. For this lecture, we focus speci�cally on Permutation Branching Programs (PBPs), where

the transition matrix between layers can be described by a permutation matrix.

�eorem 10.1 (Barrington). Let C : {0, 1}k → {0, 1} be a boolean circuit with depth d and fan-in 2 (i.e. each gate
has two inputs). �en we can compute C using a Permutation Branching Program (PBP) of length ` ≤ 4d and width 5.

31

In particular, observe that if d = O(log n), then the length of the PBP is ≤ 4O(logn) = poly(n). We describe our

new scheme, let PBP = (inp, {Mi,0,Mi,1}i∈[`]) be a permutation branching program on input x ∈ {0, 1}n with

length ` and width w.

• inp : [`]→ [n], speci�es which bit of the input to read in a given layer.

• For every i ∈ [`], Mi,0,Mi,1 ∈ {0, 1}w×w denote the transition for reading 0 or 1 respectively in layer i. Note

that these our permutation matrices.

• Let v0 ∈ {0, 1}w =

1
.
.
.

0

 be initial state.

• Let t ∈ {0, 1}w be indicator for accepting states in output layer.

• We can compute PBP(x) = t>A`,xinp(`)
· · ·A1,xinp(1)

· v0.

Our decryption circuit of depth O(log n) can be wri�en as a PBP of length poly(n). To compute homomorphically,

given fresh encryption of bits of xinp(i) we can homomorphically compute A1,xinp(i)
= xinp(i)Ai,1 + (1− xinp(i))Ai,0.

If encryptions of x have noise at most B, then encryptions of Ai,inp(i) have noise at most 2B.

We can thus homomorphically compute t>
[
A`,xinp(`)

· · ·A1,xinp(1)

]
· v0. Note that each product invoves at least

one “fresh” ciphertext Ai,xinp(i)
, so by assumption and asymmetric noise growth of GSW multiplication, overall noise

is ` · B · poly(m). Overall noise from bootstrapping is thus poly(n). For correctness, it su�ces to use q = poly(n),

and thus we can achieve FHE with polynomial modulus q.

32

CS 395T: Topics in Cryptography February 23, 2021

Lecture 11: La�ice-Based Key Exchange

Lecturer: David Wu Scribe: Charlo�e LeMay

11.1 Homomorphically Evaluating Decryption
A key step of the bootstrapping technique that makes unbounded-depth homomorphic encryption work is the

homomorphic evaluation of the decryption function. Speci�cally, to refresh a ciphertext ct such that Decrypt(sk, ct) =
x, we �rst �nd the circuit Cct(sk) := Decrypt(sk, ct), then homomorphically evaluate Cct on a fresh encryption of sk,

Encrypt(pk, sk). If this fresh ciphertext permits d levels of multiplication, and evaluating Cct uses up only d′, then the

generated ciphertext will allow for d− d′ further levels of multiplication. �is is the key to allowing homomorphic

evaluation of unbounded-depth arithmetic circuits.

To �nish the construction begun in last lecture, it is necessary to show how decryption can be expressed in as an

arithmetic circuit, so that it can be homomorphically evaluated.

Recall that GSW decryption can be computed by a Boolean circuit of depth d = O(logn).

We also have Barrington’s theorem: Any Boolean circuit of depth d can be computed by a permutation branching

program of length 4d and width 5.

�erefore the GSW decryption circuit can be computed by a Permutation Branching Program of length ` = poly(n)
and width 5.

Let us represent the program by PBP = (inpi,Mi,0,Mi,1), where inpi ∈ [n] is the bit of the input read at layer i
of the program, and Mi,b ∈ {0, 1}5×5

, b ∈ {0, 1}, represents the matrix form of the permutation performed at layer i
when the read value of xinpi is b.

Our goal is now to arithmetize PBP , that is, to convert it into an arithmetic circuit, so that it can be evaluated

homomorphically.

11.1.1 Arithmetizing the PBP
Suppose that the start state of the program is the �rst node of the �rst layer, and that some designated set of nodes

in the �nal layer are accept states. �en if v0 =

1
0
0
0
0

 represents the state of the initial layer, and t ∈ {0, 1}5 is an

indicator for the accept states, the action of PBP on x = x1x2 · · ·xn can be represented by

PBP (x) = tT
(
M`,xinp`

· · ·M2,xinp2
M1,xinp1

v0

)
.

�is is a certainly a sequence of additions and multiplications, but it is not yet an arithmetization since it involves

conditional behavior – the choice of which matrices to multiply depends on x. To eliminate this dependence, we can

set Mi = xinpi ·Mi,1 + (1− xinpi) ·Mi,0, and write

PBP (x) = tTM` · · ·M2M1v0.

�is PBP can now be computed with GSW homomorphism.

11.1.2 Noise Discussion
�e PBP above involves only a series of ` matrix multiplications, so if the initial noise of the input x is B, the

noise a�er homomorphically evaluating the decryption circuit is poly(`,m) · B. Since ` = poly(n) and m is also

33

polynomial in n, this means the overall noise is still poly(n), which will be asymptotically smaller than q. �is ensures

that correctness holds (the result is the encryption of x under the public key) except with negligible probability.

Bootstrapping with polynomial noise accumulation is secure assuming GapSVPγ with γ = poly(n), and the

circular security assumption.

11.2 Regev Encryption of Vectors

11.2.1 Protocol
Previously Regev encryption gave LWE-backed encryption of single bits. To get a more e�cient rate of communication,

we can adapt the scheme to encrypt multiple bits at once. �is will look like:

Setup(1λ) :A r← Zn×mq

S r← Zn×`q

E ← χm×`

B ← STA+ ET

Output : pk← (A,BT), sk← S

Encrypt(pk, µ ∈ Z`2) :r r← {0, 1}m

Output : ct← (Ar,BT r + µ ·
⌊q

2

⌉
)

Decrypt(sk, ct = (ct0, ct1)) :Output :
⌊
ct1 − sT ct0

⌉
11.2.2 Correctness
�e change from the one-bit version we introduced previously is that B is now a matrix with ` entries rather than

simply a vector. What we have done is essentially reuse the matrix A on ` di�erent bits, in that each row of B is a

Regev encryption of the corresponding bit of µ, using the corresponding columns of S and E. Correctness therefore

follows from correctness in the one-bit case.

11.2.3 Security
As for security, B is indistinguishable from uniform by LWE. More technically, we can construct a hybrid argument

where we argue that each successive row of B is secure by LWE. Ar is indistinguishable from uniform by the le�over

hash lemma.

11.2.4 Savings
One issue that the scheme presents is the key size – we require public keys (A,BT) of size Θ(mn) = Θ(n2 log q).

For q of a standard size of approximately 212
, shaving o� the log q factor would result in a twelve-fold increase in

communication e�ciency, which is not inconsiderable. We can remove the log q factor in the public key by le�ing A
be an n× n matrix, and adding a right-multiplicative matrix to the secret key. Details of this are le� to the student as

an exercise.

11.3 Key Exchange from LWE

11.3.1 Protocol
In analogy with the Di�e-Hellman key exchange protocol, which I (your scribe) will not reproduce here, we want

to de�ne a protocol for key exchange relying on LWE. It will operate as follows: Alice will sample A r← Zn×nq ,

34

S1, E1 ← χn×k1 , BT1 ← ST1 A+ E1, and send (A,B1) to Bob. Bob will sample S2, E2 ← χn×k2 , B2 ← As2 + E2,

and send B2 to Alice. Alice then computes C ←
⌊
ST1 B2

⌉
and C ′ ←

⌊
BT1 S2

⌉
. As we will show below, we expect

with high probability that C = C ′ will then be a shared value between Alice and Bob, usable as a key.

11.3.2 Correctness
To prove correctness, notice that

ST1 B2 = ST1 AS2 + ST1 E2

and

BT1 S2 = ST1 AS2 + ET1 S2.

Since E1, E2, S1, S2 are sampled from the error distribution, they have small value, and we expect |ST1 E2| < B and

|ET1 S2| < B for some bound B (where | · | denotes the largest entry). Suppose that when we round we extract a T -bit

long value from each of the k1 · k2 entries of C , meaning we round to one of 2T values. �ere are then 2T “crossover

points” in Zq at which an error of magnitude B could change the value we extract. �ere are at most 2B values in

the neighborhood of each of these crossover points that could cause an error, so the probability that any entry rounds

incorrectly is at most
2T+1B
q . Using a union bound, the probability that one or more of the k1 · k2 entries causes

an error is then at most
2T+1Bk1k2

q . Appropriate choices of the parameters can render this quantity negligible, so

C = C ′ with all but negligible probability.

11.3.3 Security
To show security, we must show that the observed transcript

(A,BT1 = ST1 A+ ET1 , B2 = AS2 + E2,
⌊
ST1 B2

⌉
)

leaks no information to probabilistic polynomial-time adversaries. �e �rst step is to say that, based on LWE, B2 is

indistinguishable from a uniform random matrix U2, making the transcript equivalent to

(A,BT1 = ST1 A+ ET1 , U2,
⌊
ST1 U2

⌉
).

For the next step, we must be careful. We cannot simply replace B1 with uniform, since both it and

⌊
ST1 U2

⌉
have a

dependence on ST1 . What we will do instead is say that this distribution is statistically close to a distribution with an

additional error Ẽ ← χk1×k2 added before rounding ST1 U2. �erefore the above transcript is statistically close to

(A,BT1 = ST1 A+ ET1 , U2,
⌊
ST1 U2 + Ẽ

⌉
).

NOW we can apply LWE to say that since

ST1 [A‖U2] +
[
ET1 ‖Ẽ

]
=
[
BT1 ‖ST1 U2 + Ẽ

]
is indistinguishable from a uniform [U1‖U3], this means that the above transcript is indistinguishable from

(A,U1, U2, bU3e),

which clearly leaks no information. �erefore by LWE, the key exchange protocol is secure.

35

CS 395T: Topics in Cryptography February 28, 2021

Lecture 12: Homomorphic Signatures

Lecturer: David Wu Scribe: Jiahui Liu

12.1 De�nition
A homomorphic signature scheme HS consists of the following algorithms:

• KeyGen(1λ)→ (sk, vk): takes in a security parameter and outputs a signing key, veri�cation key pair (sk, vk).

• Sign(sk, x)→ σ: takes in a signing key sk and a message x; outputs signature σ.

• Verify(vk, x, σ): takes a veri�cation key vk, message x and claimed signature σ; outputs 0 for Reject or 1 for

Accept.

• Eval(f, x, σ): takes a function description f , message x and signature σ for x; outputs a signature σf,f(x).

• Preprocess(vk, f)→ vkf : takes in a veri�vation key vk and function description f , outputs vkf .

A homomorphic signature scheme should satisfy the following properties:

Correctness Honestly generated signatures should pass veri�cation with almost 1 probability:

Pr

Verify(vkf , f(x), σf(x)) = 1

∣∣∣∣∣∣∣∣
(sk, vk)← KeyGen(1λ, k),

σx ← Sign(sk, x),
σf(x) ← Eval(f, x, σx)
vkf ← Preprocess(vk, f)

 ≥ 1− negl(λ)

Unforgeability We describe the following security game:

1. �e challenger runs KeyGen to obtain (sk, vk) and sends vk to adversary A.

2. A sends in a message x; the challenger signs the message σx ← Sign(sk, x) and gives σx to A.

3. A then provides f, y, σf,y , where f is a function description, y is an alleged evaluation and σf,y is a signature.

4. �e challenger checks if f(x) = y and if Verify(vkf , y, σf,y) = 1 where vkf ← Preprocess(vk, f). A wins if if

f(x) 6= y and Verify(vkf , y, σf,y) = 1.

An unforgeable homomorphic signature scheme should satisfy: for any PPT adversary A, there exists a negligible

function negl(·) such that for all λ, the followig holds:

Pr[A wins the above game] ≤ negl(λ)

.

Succinctness A non-trivial HS should also satisfy: size of σf,y(signature a�er evaluation Eval(f, x, σx) where

y = f(x)) should be |f(x)| · poly(λ). In particular, the size of σf,y should NOT depend on |f | or |x|.
Otherwise, if we don’t consider succinctness, we can construct a trivial scheme:

• Eval(f, x, σx)→ σy = (σx, x, f). �e server(evaluator) gives y, σy to the client.

• �e client can then verify with the algorithm: parse σy as (σx, x, f). Check if y = f(x) and runVerify(vk, x, σx).

36

12.2 Construction
We next give a construction for HS, bearing similarities to the GSW encryption scheme.

• KeyGen(1λ): set la�ice parameter n = n(λ), q = q(λ). Let s = s(λ) be Gaussian width parameter for

pre-iamge sampling.

1. Sample (A,T) ← TrapGen(n, q) where A ∈ Zn×mq ,T ∈ {0, 1}m×t, t = n dlog qe ,AT = G and G is

the gadget matrix.

2. Sample random B1, · · · ,B` ← Zn×tq .

3. Output vk = (A,B1, · · · ,B`) and sk = T.

• Sign(sk, x ∈ {0, 1}`) :

1. Compute preimage sampling Ri ← SamplePre(A,T,Bi− xiG) ∈ Zm×tq , where G is the gagdet matrix.

2. Note that we have:

A[R1| · · · |R`] = [B1 − x1G| · · · |B` − x`G]

= [B1| · · · |B`]− x⊗G

3. Output σ = (R1, · · · ,R`).

• Verify(vk, x, σ) :

1. Parse vk as (A,B1, · · · ,B`) and σ as (R1, · · · ,R`).

2. Check ‖Ri‖ ≤ β where β = s · ω(
√

log n).

3. Check if A[R1| · · · |R`] = [B1| · · · |B`]− x⊗G

4. If both of the above veri�cations pass, then output Accept; otherwise output Reject.

• Eval(f, x, σ): Now we show how we compute homomorphic evaluation on signatures, along with how we

generate the veri�cation key associated with function f :

Addition To obtain sum of two bits xi + xj :

R+ = Ri + Rj

B+ = Bi + Bj

�e veri�cation algorithm will then check if

AR+ = B+ − (xi + xj)G

where R+ is the new signature generated for xi + xj and B+ is the new veri�cation component associated

with the addition operation.

37

Multiplication To obtain product xi · xj : We have ARi = Bi − xiG and ARj = Bj − xjG. We would

want R×(a function of Ri,Rj , xi, xj and is also short) and B×(a function of Bi,Bj but independent of xi, xj
since the veri�cation algorithm does not know x) so that AR× = B× − xixj ·G.

By the following computation:

ARi = Bi − xiG→ Bi = ARi + xiG

Let BiG
−1Bj = (ARi + xiG)G−1Bj

= ARiG
−1Bj + xiBj

= ARiG
−1Bj + xi(ARj + xjG)

= A(RiG
−1Bj + xiRj) + xixjG

�erefore, we would have R× = RiG
−1Bj + xiRj and B× = BiG

−1Bj .

Observation 1 R× = RiG
−1Bj + xiRj is a function of the inputs and ‖R×‖∞ ≤ ‖Rj‖∞ − t+ ‖Ri‖∞

B× = BiG
−1Bj is a function of only the veri�cation keys, as desired (as in GSW homomorphic multiplication

operations).

Observation 2 Note thatR+ = Ri+Rj = [Ri|Rj]
[
It
It

]
andR× = RiG

−1Bj+xiRj = [Ri|Rj]
[
G−1Bj
xiIt

]
.

�e matrices on the right side of are small linear functions of Ri,Rj .

Since we already have addition(XOR) and multiplication(AND), we can compose the above operations to obtain

signature Rf(x) for evaluation f(x).

Moreover, multiplication scales noise by a factor of t. If f can be computed by a circuit of depth d, then

‖Rt‖∞ ≤ tO(d) = (n log q)O(d)
.

• Preprocess(vk, f) andVerify(vkf , f(x), σf(x)): To verify a signatureσf(x) = Rf(x) on f and y = f(x)(supposedly),

one can compute Bf from B1, · · · ,B`; then check if ARf(x) = Bf − y ·G and then check if ‖Rt‖∞ ≤ tO(d)
.

Now if we have ARi = Bi − xiG for each xi, then we can verify ARf = Bf − f(x) ·G by computing Bf

from evaluating f on B1 · · · ,B`.

More generally, we can write:

Rf(x) = [R1| · · · |R`] ·Hf,x

ARf(x) = A[R1| · · · |R`] ·Hf,x

= [B1 − x1G| · · · |B1 − x`G] ·Hf,x

= Bf − f(x)⊗G

where Hf,x ∈ Z`t×tq and is small (‖Hf,x‖∞ ≤ (n log q)O(d)).

Note that in the above equations, computing Bf from B1 · · · ,B` and f is input independent; computing

[B1 − x1G| · · · |B1 − x`G] ·Hf,x is input dependent. �ese are important homomorphic operations in la�ice based

schemes.

38

CS 395T: Topics in Cryptography March 2, 2022

Lecture 13: Homomorphic Signatures and Commitments

Lecturer: David Wu Scribe: Alexander Burton

13.1 Homomorphic Signature Schemes
Recall the GVW homomorphic signature scheme discussed in the previous lecture, with the key points summarized

below:

• �e veri�cation key is vk = (A,B1, . . . ,B`), where A ∈ Zn×mq , and B1, . . . ,B` ∈ Zm×tq are random.

• �e signing key is sk = T, a trapdoor for A.

• A signature of a message x ∈ {0, 1}` is a collection R1, . . . ,R` ∈ Zm×tq of short matrices satisfying ARi =
Bi − xiG.

• Homomorphic evaluation is done with the addition matrix B+ = Bi + Bj and the multiplication matrix

B× = Bi ·G−1(Bj). �e evaluation of a function f of multiplicative depth d is then given by

Bf,x = ARf,x − f(x) ·G

where Rf,x =
[
R1 | · · · | R`

]
·Hf,x and ‖Hf,x‖ ≤ β := (n log q)O(d)

.

13.2 Unforgeability
We turn to the question of unforgeability, for which there are two similar notions.

De�nition 13.1. A homomorphic signature scheme is said to be adaptively unforgeable if there does not exist an

adversary with a non-negligible advantage in the following security game:

Adversary Challenger

vk←− (vk, sk)← KeyGen
(
1λ
)

x−→ σx ← Sign(sk, x)
σx←−

f, y, σf,y−−−−→ Check y 6= f(x) and Verify(vkf , y, σf,y) = 1.

De�nition 13.2. A homomorphic signature scheme is said to be selectively unforgeable if there does not exist an

adversary with a non-negligible advantage in the following security game:

Adversary Challenger

x−→
vk←− (vk, sk)← KeyGen

(
1λ
)

σx ← Sign(sk, x)
σx←−

f, y, σf,y−−−−→ Check y 6= f(x) and Verify(vkf , y, σf,y) = 1.

39

�e only di�erence between the two de�nitions is when the adversary sends the message x. Selective unforgeability

is a weaker notion than adaptive unforgeability, and much easier to work with; we will prove selective unforgeability

of our signature scheme. It is not too di�cult to extend our scheme to an adaptively secure one (compose with a

vanilla signature scheme).

�eorem 13.3. Under LWE, the given scheme is selectively unforgeable.

Proof. We use a hybrid argument. De�ne the following hybrid games:

• Hyb0 is the normal selective unforgeability game.

• Hyb1 is Hyb0, except for key generation, instead of choosing Bi at random, the challenger chooses Ri ∈
{0, 1}m×t at random and setsBi ← ARi+xiG. We can output vk = (A,B1, . . . ,B`) andσx = (R1, . . . ,R`).

• Hyb2 is Hyb1, except for key generation, instead of choosing A at random, the challenger chooses a LWE

matrix for A:

Ā
R←− Z(n−1)×m

q

s̄
R←− Zn−1

q

e
R←− χm

A←
[

Ā
s̄T Ā + eT

]
Note that we do not need trapdoor information for A since we only need to sign x, which is programmed into

the veri�cation key.

Observe that Hyb0 and Hyb1 are statistically equivalent, since ARi and thus ARi + xiG are statistically uniform by

Le�over Hash Lemma. Furthermore Hyb1 and Hyb2 are computationally equivalent, since by LWE, random A and

LWE A are computationally indistinguishable.

To �nish the reduction, we can show that Hyb2 produces a contradiction unconditionally. Let A be an adversary

that wins Hyb2; suppose it produces R∗, f, y where ‖R∗‖ ≤ β, y 6= f(x), and

AR∗ = Bf − y ·G.

Now consider an honest evaluation of f(x), i.e. Rf,x =
[
R1 | · · · | R`

]
·Hf,x, where:

ARf,x = Bf − f(x) ·G.

Subtracting and collecting yields

A(R∗ −Rf,x) = ±G

Multiplying through by the solution vector

[
−s̄T | 1

]
on the le� gives

eT (R∗ −Rf,x) = ±
[
−s̄T | 1

]
·G

Observe now that the le� hand side is small, and in particular is much less than q. However, the right hand side is

large, since the entries of G are large (≈ q/2). �is yields our contradiction.

13.3 Context-Hiding
Another important security notion is context-hiding. Informally, a context-hiding scheme is one in which computed

signatures σf,f(x) reveal nothing about x (except for f(x)).

40

De�nition 13.4. A homomorphic signature scheme is said to be (statistically) context-hiding if there exists an

e�cient simulator S where for any (vk, sk)← KeyGen(1λ), x ∈ {0, 1}`, and f : {0, 1}` → {0, 1},

{vk,Eval(vk, f, σ)}
S
≈ {vk,S(sk, vk, f, f(x))} .

�e current scheme is not context-hiding, since Rf,x depends on Hf,x, which is a function of x. However, we

can modify the construction to make it context-hiding by re-randomizing the Rf,x at the end.

Construction 13.5. Suppose ARf,x = Bf − y ·G where Rf,x is small and y ∈ {0, 1}. To re-randomize Rf,x, we

can use preimage sampling. First, the evaluator can compute from y and vk:

V =
[
A | Bf + (y − 1) ·G

]
=
[
A | ARf,x + (2y − 1) ·G

]
Note that 2y − 1 ∈ {−1, 1}. Observe that Rf,x is now a trapdoor for V. �us, we can add a random target z

R←− Znq
to vk, and make the signature be a short t such that Vt = z. �e signing algorithm will then compute

t← SamplePre(V,±Rf,x, z, s); s = (n log q)O(d).

Veri�cation of σf,y can be done by computing V as above and checking that Vσf,y = z and ‖σf,y‖ ≤ β.

To prove that this is context hiding, we observe that t ∼ DL⊥z (V),s, where V depends only on A,Bi, f, y. A

homework problem shows that since V is an extension of A, we can sample from DL⊥z (V),s using a trapdoor for A.

Proof of unforgeability follows the same strategy as the previous proof.

13.4 Dual-Mode Homomorphic Commitment Schemes
It turns out that there is a nice framework that uni�es homomorphic encryption and homomorphic signatures.

Observe the parallels between these two schemes:

Homomorphic Encryption (GSW) Homomorphic Signatures (GVW)

pk: a LWE matrix A vk: a random matrix A
ciphertexts: C = AR + µG signatures: AR = B + µG.

�e key insight is that GSW homomorphisms are homomorphic in both the message and the randomness.

HE eval / HS verify: f,C1, . . . ,C` 7→ Cf

HS eval:
[
C1 − x1G | · · · | C` − x`G

]
·Hf,x = Cf − f(x) ·G

A ·
[
R1 | · · · | R`

]
·Hf,x︸ ︷︷ ︸

Rf,x

7→ Cf = A Rf,x︸︷︷︸
randomness

+ f(x)︸︷︷︸
message

·G.

We can combine this into the following idea.

Construction 13.6. A dual-mode homomorphic commitment scheme is (informally) given by the following

construction:

• pp: choose A ∈ Zn×mq according to some distribution.

• Commit(µ): sample R
R←− {0, 1}m×m, output C = AR + µG.

• Open(C): reveal R; check C = AR + µG and ‖R‖ ≤ β.

• Eval(Ci, f): compute Rf,x using Hf,x. �is is no di�erent than GSW homomorphic evaluation.

�e remarkable property is that we can get statistical binding/hiding depending on where A is taken from.

41

1. If A is an LWE matrix,

A =

[
Ā

s̄T + Ā + eT

]
,

then the scheme is extractable – given a trapdoor, we can “decrypt” the commitment to the unique message

(if it exists) for which an opening exists. Furthermore, the scheme is statistically binding and computationally

hiding.

2. If A is a uniform matrix,

A
R←− Zn×mq ,

then the scheme is equivocable – given a trapdoor, we can open a commitment to both 0 and 1 by preimage

sampling. Furthermore, the scheme is statistically hiding and computationally binding.

We can see that the �rst mode is GSW homomorphic encryption, and the second mode is GVW homomorphic

signatures.

42

CS 395T: Topics in Cryptography March 7, 2022

Lecture 14: Homomorphic Commitments

Lecturer: David Wu Scribe: Yingchen Wang

In this lecture we are going to discuss homormorphic commitment and an application of homomorphic commitment

to none interactive zero knowlwegde.

14.1 Recap: GSW Homomorphic Commitments
Construction 14.1. GSW homomorphic commitment scheme

• pp: A ∈ Zn×mq from some distribution.

• Commit(µ): µ ∈ {0, 1}. Sample R← Dm×tZm,s, s ∼ ω(
√
logn). C = AR + µG, which is just a GSW ciphertext

(still sematically secure but cannot use LHL because R is not binary, instead using Gaussian smoothing lemma).

• Open(C): Publish R ∈ Zm×tq . �e veri�er checks that C = AR + µG and ‖R‖∞ 6 β.

• Eval(Ci, f): Given C1 = AR1 + µ1G, …Cl = ARl + µlG; we can apply GSW homomorphic encryption

operation Cf = ARf,x+f(x)G, where Rf,x = [R1|...|Rl]∗Hf,x and Hf,x is short (‖Hf,x‖∞ 6 (nlogq)O(d)

and d is the depth of the computation).

14.2 Dual Mode Commitments
1. A extractable commitment scheme is statistically binding. Suppose A ∈ Zn×mq is a LWE matrix, where

A =

[
Ā

s̄T Ā + eT

]
. �en the commitment scheme is extractable, which means that given a trapdoor td and

Commitment C, we can recover the commi�ed message µ. �e reason is that: consider C = AR + µG, the

trapdoor is s = [−s̄|1]. We can compute sTC = sTAR + µsTG = eTR + µsTG, where eTR is short, so we

can recover µ.

We can only open to the value that is extracted, because we cannot open the commitment to 2 values simultane-

ously. Suppose there exists R1, R2 such that C = AR1 +µ1G = AR2 +µ2G, we have A(R1−R2) = ±G
and sTA(R1 −R2) = eT (R1 −R2) = ±sTG. eT (R1 −R2) is small whereas sTG contains large entries.

So we prove by contradiction that only one value can be opened by this scheme (a extractable commitment

scheme must statistically binding).

2. A equivocable commitment scheme is statistically hiding. Suppose A
R←− Zn×mq is uniform random

matrix. �en the equivalent scheme is equivocable.

Given a trapdoor td and any commitment C, we can open C to both 0 and 1. �e td can be constructed as the

matrix T such that AT = G. Given C, T, and µ ∈ {0, 1}, our goal is to �nd R such that C = AR + µG and

‖R‖ < β. To solve this relation, we can use the preimage sampler. We can sample R
R←− SamplePre(A,T,C−

µG, s) for both µ = 0 or µ = 1. In such a way, the commitment can be opened to both messages, so it is

equivocable. Equivocation implies that the commitment scheme is statistically hiding because it can open to

any message, so the message is completely hidden.

Can we have both? statistically binding and statistically hiding? Although we cannot get statistically for both, we

can have statistically binding and computationally hiding or statistically hiding and computationally binding.

For example, the second scheme is above is both statistically hiding and computationally binding because:

43

• Hybrid0: Adversary breaks binding. Given pp as A, adversary can output C, R1, R2, such that R1 opens to 0,

and R2 opens to 1.

• Hybrid1: Adversary given pp as a LWE matrix A =

[
Ā

s̄T Ā + eT

]
and output the same thing as in Hybrid0.

Under the LWE assumption, Hybrid0 and Hybrid1 are indistinguishable. We know Hybrid1 is statistically binding,

which means it is extractable. �e chance of adversary to win in Hybrid1 is negl no ma�er how powerful the adversary

is. So the advantage of adversary in Hybrid0 is still negl. �erefore, even though scheme 2 above has a equivocation

property, it is possible to open any C to 2 di�erent messages, a computationally bounded adversary cannot �nd these

2 values.

Similar arguments can show that the �rst scheme above is statistically binding and computationally hiding.

�ere are 2 distributions to sample the public parameters. Each gives either statistically binding or statistically

hiding, and the 2 distributions are computationally indistinguishable. If we sample from distribution D1 we will get

statistical property that D1 provides and computational property that the other distribution D2 provides.

A dual mode commitment scheme is useful because we can argue statistical property easily and then argue

computational property by switching between the 2 strings in the hybrids.

14.3 An Application: Designated-Prover NIZKs for NP
Construction 14.2. Designated-prover NIZK

• Setup: Output a pair of (vk, sk). �e sk will be given to the prover, who also has a statement (s) and witness

(w). �e vk will be given to the veri�er, who knows the statement s. �e prover wants to convince the veri�er

that it has a witness w follows the relation associated with the NP language Lby sending a proof �. �e scheme

is not interactive because the only communication is prover sending a message to the veri�er.

• Completeness: if x ∈ L, then verifier(vk, x, Π) = 1.

• Soundness: if x 6∈ L, then Pr[verifier(vk, x, Π∗) = 1] = negl, for all Π∗.

• Zero-Knowledge: �e same proving key can be reused to generate multiple proofs and still preserve Zero-

Knowledge. For every e�cient adversaryA, there exists an e�cient simulatorS = (S0, S1) such that (vk, sk)←
Setup(1λ), (ṽk, s̃t)← S0(1λ), and the probability that —Pr[AO0(sk,x,w)(vk) = 1] - Pr[AO1(s̃t,x,w)(ṽk) = 1]— =

negl. O0(sk, x,w) outputs Prove(sk, x, w) if R(x,w) = 1 and ⊥ otherwise; and O1(s̃t, x,w) outputs S1(s̃t, x) if

R(x,w) = 1 and ⊥ otherwise.

Zero-Knowledge says that an adversary who can see the real proof in O0 can not tell the di�erence between

real proof and simulated proof (O1).

14.3.1 Construction Attempt 1
• pp: Setup(1λ)

• Prover knows statement (x) and witness (w). Veri�er knows the statement (x). �e public parameter pp will

given to both prover and veri�er.

• �e prover will �rst commit to the witness as: σw : Commit(pp,w), and then compute on NP relation function

R(x,w): σRx(w) : Eval(σw ,Rx). �e prover creates the proof τ by open the commitment: Open(pp, σRx(w), 1)
(If the statement is true, should be open to 1). Prover sends the commited witness σw and proof τ to the veri�er.

• �e veri�er will compute σRx(w) upon receiving σw . �e functionRx() depends on statement x only. �en

check that σRx(w) opens to 1.

�e A�empt is zero-knowledge because σw is from a hiding commitment scheme so σw does not leak anything

about the witness w. �e opening τ is context hiding.

However this protocol is not sound because σw might not be generated honestly.

44

14.3.2 Construction Attempt 2: Move commitment to the public parameter
• pp: Setup(1λ), σw: Commit(pp, w).

• Prove can compute commitment σRx(w) : Eval(σw ,Rx) and proof τ as Open(pp, σRx(w), 1). Prover will only

send τ to the veri�er.

• �e veri�er will compute σRx(w) upon receiving σw . �e functionRx() depends on statement x only. �en

check that σRx(w) opens to 1.

We solve the above soundness problem because σw is part of public parameter so prover cannot cheat it. �ere

does not exist a witness for a false statement. Zero-Knowledge is not a�ected because we still have context hiding

and binding.

However the public parameter now depends on the witness. �e prover cannot choose the statement and witness

it wants to prove.

14.3.3 Solution: add a layer of indirection
• Setup: Sample a symmetric key k. Sample pp for commitment scheme. �e secret proving key will be sk: (k, r),

and the public veri�cation key is pk: σk, and pp, where σk is a commitment to the secret key k and r is an

opening to σk .

• Prover starts by encrypting the witness: ct: Encrypt(k, w). Create a circuit Cwith ct, and x hard coded inside it:

Cct, x(k) :R, Decrypt(k, ct). �en use the commitment to the secret key σk to compute σCct,x(k). �e proof τ
will be the ct and opening to σCct,x(k). Decrypt(k, ct) will decrypt to the witness so (ct and opening to σCct,x(k))

is a commitment to 1.

• Veri�er Homomorphically evaluates Cct, x() on σk and checks that if the opening to σCct,x(k) really opens to 1.

�e witness is hiding because of the semantic security of the encryption scheme. (ct and opening to σCct,x(k))

does not depend on the witness so can be simulated by a simulator so the scheme is Zero-Knowledge.

�e Soundness holds because of binding and unforgeability property of commitment. If x 6∈ L, then Cct, x(k) = 0
for all ciphertext.

45

CS 395T: Topics in Cryptography March 9, 2022

Lecture 15: A�ribute-Based Encryption

Lecturer: David Wu Scribe: George Lu

15.1 Preliminaries
De�nition 15.1. We say set of algorithms (Setup,KeyGen,Encrypt,Decrypt) is a correct a�ribute-based encryption

scheme if for all messages µ, functions f and a�ributes x where f(x) = 1

Pr

 Decrypt(skf , ctx,µ) = µ

∣∣∣∣∣∣∣
(pk,msk)← Setup(1λ)

skf ← KeyGen(msk, f)

ctx,µ ← Encrypt(pk, x, µ)

 = 1

De�nition 15.2. We say set of algorithms (Setup,KeyGen,Encrypt,Decrypt) are a secure a�ribute-based encryption

scheme for all admissible
1

PPT adversaries, the advantage in the following experiments (parameterized by bit b) is

negligible.

• Setup Phase:

– Challenger generates (pk,msk)← Setup(1λ)

– Challenger sends pk to adversary

• Pre-Challenge Key�eries: Adversary repeats as many times as it desires

– Adversary sends a function f to Challenger

– Challenger runs skf ← KeyGen(msk, f) and sends skf to adversary

• Challenge Ciphertext:

– Adversary sends an a�ribute string x and challenge messages µ0, µ1

– Challenger runs ctx,b ← Encrypt(pk, x, µb) and sends ctx,b to adversary.

• Post-Challenge Key�eries: Adversary repeats as many times as it

– Adversary sends a function f to Challenger

– Challenger runs skf ← KeyGen(msk, f) and sends skf to adversary

• Adversary returns a bit b′

15.2 Construction

15.2.1 Dual-Regev Encryption
Our starting point is a plain public-key encryption scheme which can be viewed as a ‘dual’ of the normal Regev

encryption PKE scheme covered previously, in the sense that the ciphertext structure of dual Regev mirrors the

structure of the public key of primal Regev and vice versa.

• KeyGen(1λ)

1
An adversary is considered admissible if f(x) = 0 for all key queries made by the adversary

46

– A← Zn×mq , r ← {0, 1}m, t = Ar

– Output (pk = (A, t), sk = r)

• Encrypt(pk, µ)

– s← Znq , e← χm, e′ ← χ

– Output ct =
(
s>A+ e>, s>t+ e′ + µ ·

⌊
q
2

⌋)
• Decrypt(sk = r, ct = (ct0, ct1))

– Output dct1 − ct0rc2

Correctness

Lemma 15.3. If Pr
[
|χ| ≤ q

4(m+1)

]
= 1, then the above is a correct PKE scheme

Proof. Observe we can write

dct1 − ct0rc2

=
⌈
s>t+ e′ + µ ·

⌊q
2

⌋
−
(
s>A+ e>

)
· r
⌋

2

=
⌈
s>t+ e′ + µ ·

⌊q
2

⌋
− s>Ar − e>r

⌋
2

=
⌈
µ ·
⌊q

2

⌋
+ e′ − e>r

⌋
2

Since we can bound e′ and the entries of e with
q

4(m+1) , we can bound |e′ − e>r| with
q
4 , so our rounding will output

µ.

Security

Lemma 15.4. Assuming LWEn,m+1,q,χ andm ∈ Ω(n log q), the above is a secure PKE scheme

Proof. Consider the following sequence of hybrids:

• Hybrid 0

– A← Zn×mq , r ← {0, 1}m, t = Ar

– s← Znq , e← χm, e′ ← χ

– Adversary receives

(
s>A+ e>, s>t+ e′ + µ ·

⌊
q
2

⌋)
• Hybrid 1

– A← Zn×mq , t← Zn
q

– s← Znq , e← χm, e′ ← χ

– Adversary receives

(
s>A+ e>, s>t+ e′ + µ ·

⌊
q
2

⌋)
• Hybrid 2

– Sample ct0 ← Zmq , ct1 ← Zq
– Adversary receives (ct0, ct1)

Hybrids 0 and 1 are indistinguishable via the le�over hash lemma, as m ∈ Ω(n log q). Hybrids 1 and 2 are

indistinguishable via LWE, with secret s and matrix

[
A
t

]
.

47

15.2.2 ABE Construction (Informal)
For notational convenience, we will say decryption succeeds i� f(x) = 0 (instead of f(x) = 1 as de�ned above.

• Setup(1λ)→ (pk,msk): Sample random matricesB1, . . . B` ∈ Zn×mq , a random vector t← Znq , and a trapdoor

(A, tdA)← TrapGen(n,m, q), outpu�ing (A,B1, . . . , B`, t) as the public parameters and the la�ice trapdoor

tdA as the master secret key.

• KeyGen(msk, f)→ skf : Sample a short vector zf using tdA such that [A|Bf]zf = t to output as the function

secret key.

• Encrypt(pk, x, µ): Sample vectors e>, ẽ>, e′ from error distribution, and output s>A+e>, s>[B1−x1G| . . . |B`−
x` ·G] + ẽ>, s>t+ e′ + µ ·

⌊
q
2

⌋
• Decrypt(skf , ct): Recall Bf − f(x) · G = [B1 − x1G| . . . |B` − x` · G] · Hf,x. Using the �rst 2 ciphertext

components, when f(x) = 0, this allows us to compute s>[A|Bf] + error. Multiplying by a short zf allows

us to recover s>t + error while keeping the error ‘small’, which allows us to recover µ via computing the

di�erence with the third ciphertext component

48

CS 395T: Topics in Cryptography March 21, 2022

Lecture 16: A�ribute-Based Encryption

Lecturer: David Wu Scribe: Steven Cheng

In this lecture, we will focus on constructing a�ribute-based encryption. Recall that in an a�ribute-based

encryption scheme, a ciphertext ct is associated with a public a�ribute x, while decryption keys skf are bound to a

function f . Decryption of ct using skf should only succeed if f(x) = 0, outpu�ing ⊥ otherwise. Note that this �ips

the standard convention, where successful decryption occurs when f(x) = 1.

16.1 ABE From Dual Regev Encryption
Construction 16.1 (A�ribute Based Encryption). . We can construct the following a�ribute based encryption scheme

from dual Regev encryption:

• Setup(1λ): Set n = n(λ), q = q(λ),m = Θ(n log q) as the la�ice parameters, χ = χ(λ) as the error

distribution, and σ = σ(λ) as the parameter for preimage sampling. Next, we sample the following:

(A, T)← TrapGen(n, q) A ∈ Zn×mq

B1, . . . , B`
r← Zn×tq t = dn log qe

p r← Znq

Finally, we output mpk = (A,B1, . . . , B`, p) and msk = T .

• KeyGen(mpk,msk, f): Compute Bf ← [B1| . . . |B`] · Hf , then use preimage sampling to obtain a vector

z ← SamplePre

(
[A|bf],

[
T
0

]
, p, σ

)
. Output skf ← z.

• Encrypt(mpk, x, µ): Sample the following:

s r← Znq , e1 ← χm, e′ ← χ

R1, . . . , R`
r← {0, 1}m×t

e2 ← eT1 [R1| . . . |R`]

Output ct =
(
sTA+ eT1 , sT [B1 − x1G| . . . |B` − x`G] + eT2 , sT p+ e′ + µ

⌊
q
2

⌉
, x
)
.

• Decrypt(skf , ct): Compute ct3 − [ct1|ct2Hf,x]z and round.

Correctness. Suppose f(x) = 0. Observe that

ct2Hf,x =
(
sT [B1 − x1G| . . . |B` − x`G] + eT2]

)
Hf,x = sT (Bf − f(x) ·G) + eT2 Hf,x = sTBf + eT2 Hf,x

�erefore,

[ct1|ct2Hf,x]z =
(
sT [A|Bf] + [eT1 |eT2 Hf,x]

)
= sT p+ [eT1 |eT2 Hf,x]z

�e decryption algorithm computes

ct3 − [ct1|ct2Hf,x]z =
(
sT p+ e′ + µ

⌊q
2

⌉)
−
(
sT p+ [eT1 |eT2 Hf,x]z

)
= µ ·

⌊q
2

⌉
+ e′ − [eT1 |eT2 Hf,x]z

Observe that e′−[eT1 |eT2 Hf,x]z is small since e′, e1, e2 are all sampled from the error distribution and ||Hf,x|| < mO(d)
,

where d is the depth of the computation. �us a�er rounding, we are simply le� with µ
⌊
q
2

⌉
, from which we can

easily extract µ.

49

Security. Proving security for this scheme is delicate. For the reduction to LWE, we need to simulate the ABE

scheme, which in particular requires simulation of KeyGen for functions f such that f(x) = 1. Simulating this

naively requires msk, the trapdoor for A, but access to this trapdoor breaks our LWE assumption!

In the reduction, it should be the case that by breaking ABE, the adversary provides meaningful insight that

allows us to break LWE. To remedy this issue, we will shortly introduce a technique known as a punctured trapdoor,
which allows us to properly produce secret keys only when f(x) = 1. Importantly, we are unable to produce keys for

when f(x) = 0, and it is through this insight where the adversary provides meaningful insight.

In order to properly use a punctured trapdoor, we use the more relaxed notion for security, known as selective

security. In this variation, the adversary must �rst declare the a�ribute before the public parameters are sent. It is

still an open problem to construct an adaptively secure ABE scheme directly from LWE.

Selective security game. �e game for selective semantic security works as follows:

1. �e adversary sends the a�ribute, x, to the challenger.

2. �e challenger generates mpk,msk← Setup(1λ) sends the public key mpk to the adversary.

3. �e adversary sends a function f , and the challenger responds with skf ← KeyGen(msk, f). �is step repeats

as many times as the adversary likes.

4. �e adversary sends µ0, µ1, and the challenger responds with ct← Encrypt(mpk, x, µb).

5. �e adversary sends more functions f , and the challenger responds with skf ← KeyGen(msk, f). Again, this

step repeats.

6. �e adversary outputs a guess b′ for which message was encrypted.

Additionally, we require that for all f that the adversary sends, f(x) 6= 0. Otherwise, the adversary could just decrypt

the ciphertext using one of the provided secret keys.

Remark 16.2. �e adversary is allowed to ask for secret keys twice – once before sending the message, and once

a�er – for two di�erent reasons. An adversary may want to choose their messages based on what the secret keys

look like, and may want to ask for secret keys based on what the ciphertext looks like, so both steps are necessary to

encapsulate security.

Also, observe that Setup is run a�er the a�ribute x is provided. As we will see shortly, this will allow us to use

punctured trapdoors that embeds x into mpk.

Proving security. We will use a hybrid argument to prove selective security of our ABE scheme. To start, Hyb0

will be the standard selective semantic security game described above.

For Hyb1, we modify how Bi is computed in Hyb0, as follows:

• In Step 2, instead of mpk,msk← Setup(1λ), the challenger computes

(A, T)← TrapGen(n, q)

R1, . . . , R`
r← {0, 1}m×t

B1
r← AR1 + x1G, . . . , B`

r← AR` + x`G

p r← Znq mpk r← (A,B1, . . . , B`, p) msk← T

• To compute the challenge ciphertext, the challenger computes:

s r← Znq , e1
r← χm, e′ r← χ, eT2 = eT1 [R1| . . . |R`]

ct r←
(
sTA+ eT1 , s

T [B1 − x1G| . . . |B` − x`G] + eT2 , s
T p+ e′ + µ ·

⌊q
2

⌉
, x
)

50

Hyb0 and Hyb1 are statistically indistinguishable by a variant of LHL. In particular, these hybrids are indistin-

guishable if (A,AR, eTR)
s

≈ (A, u, eTR), which follows from LHL.

In Hyb2, we compute KeyGen without using the trapdoor for A:

Rf,x ← [R1| . . . |R`]Hf,x

zf
r← SamplePre

(
[A|Bf]

[
−Rf,x
I

]
, t, σ

)
When σ is su�ciently large enough (∼ mO(d)

), thenHyb1 andHyb2 are statistically indistinguishable by pre-image

sampling. It is su�cient to show that

[
−Rf,x
I

]
is a short trapdoor for [A|Bf]. By homomorphic evaluation,

[B1 − x1G| . . . |B` − x`G]Hf,x = Bf − f(x)G

When we restrict f(x) = 1, then the product above equals Bf −G. But since Bi = ARi + xiG, we have

[B1 − x1G| . . . |B` − x`G]Hf,x = [AR1| . . . |AR`]Hf,x = ARf,x = B −G

�us, we see that

[
−Rf,x
I

]
is indeed a trapdoor:

[A|Bf]

[
−Rf,x
I

]
= −ARf,x +Bf = G

Moreover, ||Rf,x|| ≤ mO(d)
, so

[
−Rf,x
I

]
is short as well.

Punctured trapdoors. Observe that the new KeyGen scheme does not use the trapdoor for A, but can only be

used to generate keys if f(x) = 1. �is technique of programming x into the public key to create a trapdoor only

when f(x) = 1 is referred to as a punctured trapdoor.

Finally, in Hyb3, we replace the ciphertext ct with (zT1 , z
T
1 [R1| . . . |R`], z′), where z1

r← Zmq , z′
r← Zq .

Hyb2 and Hyb3 are computationally indistinguishable under LWE. To see this, let ([A|p], [zT1 |z′]) be the LWE
challenge. Observe that we can use this A to compute the public key for Hyb2/Hyb3:

R1, . . . , R`
r← {0, 1}m×t p r← Znq Bi ← ARi +XiG mpk← (A,B1, . . . , B`, p)

Once we have mpk, we can generate secret keys using a punctured trapdoor. Finally, to simulate ciphertexts, we

compute ct←
(
zT1 , z

T
1 [R1| . . . |R`], z′ + µ0 ·

⌊
q
2

⌉)
.

When zT1 = sTA+ eT1 and z′ = sT p+ e′, then we get the distribution for Hyb2:

zT1 [R1| . . . |R`] =
[
sTAR1 + eTR1| . . . |sTAR` + eT1 R`

]
= sT [AR1| . . . |AR`] + eT1 [R1| . . . |R`]
= sT [B1 − x1G| . . . |B` − x`G] + eT2

z′ + µ0 ·
⌊q

2

⌉
= sT p+ e′ + µ0 ·

⌊q
2

⌉
And when z1, z

′
are uniform random, then the ciphertext matches the distribution of Hyb3.

51

CS 395T: Topics in Cryptography March 23, 2022

Lecture 17: Predicate Encryption

Lecturer: David Wu Scribe: Rachit Garg

In the last lecture, we saw how to construct an A�ribute Based Encryption scheme from the LWE assumption.

Our key proof component was programming x∗ into the public key. �is yields a trapdoor for [A|Bf] whenever

f(x∗) = 1, and ensures semantic security whenever f(x∗) = 0. Additionally recall that our construction contained

the a�ribute x in the clear in the ciphertext. �is allowed the decryption algorithm to compute the matrix Hf,x and

hence compute the decryption correctly.

In this lecture, we will see how to construct Predicate Encryption scheme. Ciphertexts in such a scheme additionally

hide the a�ribute. A�ribute hiding can come in two �avors -

• Weak A�ribute Hiding: Successful decryption also recovers a�ribute.

• Strong A�ribute Hiding: A�ribute remains hidden even if decryption succeeds (implies functional encryption).

Our focus will be on weak a�ribute hiding.

High level idea. Combine FHE with ABE. We will encrypt the a�ribute under ABE and homomorphically evaluate

the predicate. However, if we simply encrypt the a�ribute, we need to ensure that the decryptor will be able to

decrypt at some point and compute the underlying message. To do this, we will use a “dual-use” technique where the

underlying schemes share a common secret key.

First, we will generalize our homomorphic evaluation relations to support matrix-valued computations. So far, we

have the following equations, a function f : {0, 1}` → {0, 1} :

[B1| . . . |B`] ·Hf = Bf Input-Independent Evaluation (17.1)

[B1 − x1G| . . . |B` − x`G] ·Hf,x = Bf − f(x)G. Input-Dependent Evaluation (17.2)

Suppose that f : {0, 1}` → Zn×mq is a matrix-valued function. �en we will describe an analogous relation:

[B1| . . . |B`] ·Hf = Bf Input-Independent Evaluation (17.3)

[B1 − x1G| . . . |B` − x`G] ·Hf,x = Bf − f(x). Input-Dependent Evaluation (17.4)

We will use a bit by bit approach. Let fj,k : {0, 1}` → {0, 1} be function that computes kth bit of jth entry of

f(x). �en,

[B1 − x1G| . . . |B` − x`G]Hfj,k,x = Bfj,k − [f(x)]j,kG

= [B1| . . . |B`]Hfj,k − [f(x)]j,kG.

Let Ej ∈ Zn×mq be the matrix that is 1 in position j (where j ranges over all n · m indices). �en we can

write, f(x) =
∑
j∈[n·m]

∑
k∈[dlog qe][f(x)]j,k · 2kEj . Using this expression, we can consider multiplying our matrix

expression by G−1(2kEj) and ge�ing,∑
j,k

[B1 − x1G| . . . |B` − x`G] ·Hfj,k,x ·G−1(2kEj) =
∑
j,k

[B1| . . . |B`] ·Hfj,k ·G−1(2kEj)−
∑
j,k

[f(x)]j,k ·GG−1(2kEj)

= [B1| . . . |B`]
∑
j,k

Hfj,k ·G−1(2kEj)− f(x)

�us our �nal expression sets,

Hf =
∑
j,k

Hfj,k ·G−1(2kEj)

Hf,x =
∑
j,k

Hfj,k,x ·G−1(2kEj)

52

�en we have our generalized equations 17.3,17.4 where ‖Hf‖, ‖Hf,x‖ ≤ (n log q)O(d)
.

17.1 Predicate Encryption from LWE
Construction 17.1 (Predicate Encryption from LWE). We construct the predicate encryption as follows:

• Setup(1λ, 1`): Set (A, td)← TrapGen(n, q). SampleB1 . . . ,BL
r← Zn×mq ,p r← Znq whereL = poly(`, n, log q)1

.

Output mpk = (A,B1, . . . ,BL,p) and msk = td.

• Encrypt(mpk, x, µ): Sample s r← Znq , e ← χm. Sample Ri
r← {0, 1}(n+1)dlog qe×(n+1)dlog qe

and compute

∀i ∈ [`], the GSW ciphertext, Ti =

[
A

sTA + eT

]
Ri + xi ·G.

Let t1, . . . , tL be the binary representaion of T = [T1| . . . |T`]. We �nally encode the bits of t1, . . . , tL and

output, cT0 ← sTA+ eT0 where e0 ← χm and ∀j ∈ [L], cTj = sT[Bj − tj · Ḡ] + eTj where ej ← χm. Note that

Ḡ is the gadget matrix without the last row, i.e. Ḡ ∈ Zn×(n+1)dlog qe
q = [G ∈ Zn×ndlog qe

q |0 ∈ 0n×dlog qe] and

G =

1 2 . . . 2dlog qe−1

. . .
1 2 . . . 2dlog qe−1

 = gT ⊗ In

is the gadget matrix. Finally, we compute c′ = sTp + µ · b q2e + e′ where e′ ← χ and output ct =
(T, c0, c1, . . . , cL, c

′).

• KeyGen(msk = td, f): Let T = [T1| . . . |T`] be an encryption of x = (x1, . . . , x`). Let Tf = FHE.Eval(f,T).

Let f̂ be a circuit that maps an input T to T̄f where Tf =

[
T̄f

tf

]
, i.e. the circuit homomorphically evaluates f

on T and outputs all but the last row of Tf .

UseB1, . . . ,BL, f̂ to computeBf̂ from the input independent evaluation, i.e. computeBf̂ = [B1| . . . |BL]·Hf̂ .

Use td to sample a short zf such that [A|Bf̂]zf = p. Output the secret key skf as zf .

• Decrypt((skf , f), ct): Homomorphically evaluate f̂ on the encoding [c1| . . . |cL] by computing the input

dependent evaluation, i.e. cf̂ ← [c1| . . . |cL] ·Hf̂ ,T. Homomorphically compute Tf ← FHE.Eval(f,T) and

let tf be the last row of Tf .

Compute c′ − [c0|cf̂ + tf] · zf and round the result.

Correctness. By construction,

cf̂ = [c1| . . . |cL] ·Hf̂ ,T = sT[B1 − t1Ḡ| . . . |BL − tLḠ]Hf̂ ,T + [eT1 | . . . |eTL]Hf̂ ,T.

�us cf̂ ≈ sT(Bf̂ − T̄f) (the error terms are small and captured in the approx notation). Finally, we have,

cf̂ + tf ≈ sTBf̂ − sTT̄f + tf

= sTBf̂ + [−sT|1]Tf

≈ sTBf̂ + f(x) · [−sT|1]G

�e last expression follows from GSW decryption. Recall that Tf is a GSW ciphertext encrypting f(x) under the

same secret s. Note that when f(x) = 0, then cf̂ + tf ≈ sTBf̂ and [c0|cf̂ + tf]zf ≈ sT[A|Bf̂]zf = sTp. �us,

c′ − [c0|cf̂ + tf] · zf ≈ µb q2e and decryption succeeds.

1
�e exact polynomial will become clear based on our construction.

53

Security. Security follows by a similar argument as in ABE security (embed encryption of x∗ into public parameters).

Summarizing, the key idea behind our approach was using ABE evaluation (for matrix-valued relations), to compute,

sT[B1 − x1G| . . . |B` − x`G]Hf,x = sT(Bf − f(x) ·G)

But this requires knowledge of x (to construct Hf,x). To hide the a�ribute x, we encrypt x and homomorphically

evaluate the FHE evaluation function, i.e. we compute Encrypt(f(x)) from Encrypt(x). Now if s is also the GSW

secret key, then sT e�ciently implements GSW decryption. Using the same s for GSW and ABE is captured by this

“dual use” approach.

54

CS 395T: Topics in Cryptography March 28, 2022

Lecture 18: Functional Encryption

Lecturer: David Wu Scribe: Jiahui Liu

18.1 De�nition
A functional encryption scheme FE consists of the following algorithms:

• Setup(1λ)→ (mpk,msk): takes in a security parameter and outputs a master public key, a master secret key

key pair (mpk,msk).

• Encrypt(mpk, x)→ ctx: takes in master public key and ciphertext x; outputs a ciphertext ctx.

• KeyGen(msk, f)→ skf : takes in the master secret key, a function f and outputs a functional key skf .

• Decrypt(skf , ctx)→ f(x): takes in functional key skf and a ciphertext ctx; outputs f(x).

A functional encryption scheme should satisfy the following properties:

Correctness.

Pr

Decrypt(skf , ctx) = f(x)

∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
ctx ← Encrypt(mpk, x),
skf ← KeyGen(msk, f)

 ≥ 1

Game-based security. �ere are di�erent functional encryption security de�nitions. We will look at the game-

based one.

We describe the following security game:

1. �e challenger runs Setup to obtain (mpk,msk) and sends mpk to adversary A.

2. A queries on functionality f of its own choice for polynomially many times; the challenger computes skf ←
KeyGen(msk, f) and gives skf to A.

3. A then provides x0, x1, where f(x0) = f(x1) for all queried f as challenge messages. Challenger encrypts

ctb ← Encrypt(mpk, xb) for a random b.

4. A queries again for skf on functionality f of its own choice for polynomially many times, where f(x0) = f(x1)
for all queried f .

5. A outputs a guess b′.

For any PPT adversary A, there exists a negligible function negl(·) such that for all λ, the followig holds:

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ≤ negl(λ)

.

Subtlety of FE de�nition. �e de�nition above, when considering certain functionalities, can be satis�ed by a

trivial scheme: for instance, if the function is a OWP, then it’s computatinally hard for the adversary to �nd x0 6= x1

but f(x0) = f(x1) for a start. But this de�nition is good enough for a broad range of se�ings.

FE is a very generic de�nition of encryption, PKE, ABE and predicate encryption can all be seen as FE with

certain functional key.

55

18.2 Building block for FE: garbled circuits.
We next give a construction for single-key FE, where the adversary can only see a single functional key.

We will �rst introduce the main building block: Garbled circuits.

Garbled circuits can be used to realize two-party computation: Alice with input x and Bob with input y want to

compute f(x, y) without revealing their own input to each other.

We show a garbling protocol from [Yao86].

Garbling a single gate. �e garbler (encoder) does the following:

• Consider an AND gate:

x1 x2 AND(x1, x2)

0 0 0

0 1 0

1 0 0

1 1 1

• For each wire i in the circuit: associate a pair of keys k0
i , k

1
i . kbi is the key (of a symmetric encryption scheme)

associated with wire i for wire value b ∈ {0, 1}. See Figure 18.1.

Figure 18.1: AND Gate with wire labels

• Prepare garbled truth table for each gate:

1. Replace each entry of the truth table with corresponding key

2. Encrypt output key with each of the input keys:

ct00 ← Encrypt(k0
1,Encrypt(k

0
2, k

0
3))

ct01 ← Encrypt(k0
1,Encrypt(k

1
2, k

0
3))

ct10 ← Encrypt(k1
1,Encrypt(k

0
2, k

0
3))

ct11 ← Encrypt(k1
1,Encrypt(k

1
2, k

1
3))

�en randomly shu�e positions of the ciphertexts.

x1 x2 AND(x1, x2)

k0
1 k0

2 k0
3

k0
1 k1

2 k0
3

k1
1 k0

2 k0
3

k1
1 k1

2 k1
3

56

• Construct decoding table for output values:

k0
3 → 0; k1

3 → 1.

Alternatively, we can just encrypt output values instead of keys for output wires.

Garbling circuits. construct garbled table for each gate in the circuit, prepare decoding table for each output wire

in the circuit.

Evaluating a garbled circuit. At each garbled gate of the circuit, the evaluator tries to decrypt each pf the 4

ciphertexts with the input keys and take the output key to be the ciphertext that decrypts. �en decode using the

table.

�e invariant in the evaluation: given keys for input wires of a gate, can derive the key corresponding to the

output wire. �is enables gate-by-gate evaluation of garbled circuit.

Note the security requirement here is: evaluator needs to obtain keys for its inputs only, but without revealing

which keys it requests.

Garbling abstractions. �e abstraction of a GC scheme is:

• Garble(1λ, C)→ (C̃, {Lbi}i∈[n],b∈{0,1}) where n is the number of input wires.

• Eval(C̃, {Lbi}i∈[n])→ y

A GC scheme should satisfy the following:

• Correctness: For all circuits C : {0, 1}n → {0, 1}m and all x ∈ {0, 1}n, for (C̃, {Lbi}i∈[n],b∈{0,1}) ←
Garble(1λ, C):

Pr[Eval(C̃, {Lbi}i∈[n]) = C(x)] = 1

• Security: �ere exists an e�cient simulator S such that for all circuits C : {0, 1}n → {0, 1}m and all

x ∈ {0, 1}n, for (C̃, {Lbi}i∈[n],b∈{0,1})← Garble(1λ, C):

{C̃, {Lbi}i∈[n]} ≈comp S(1λ, C, C(x))

(We can also consider a notion where only |C| is provided to S).

⇒ that is, the garbled circuit and one set of labels(keys) can be simulated just given the output value C(x).

18.3 Using Garbled Circuits for Two-Party Computation
Oblivious transfer (OT). In an OT protocol, the sender has two messages (m0,m1); the receiver has a bit b ∈ {0, 1}.
At the end of the protocol, the receiver receives mb and should learn nothing about m1−b; the sender leanrs nothing

about b. OT is necessary and su�cient for general MPC.

57

Yao’s garbled circuit protocol. �e overall protocol now proceeds as follows:

1. �e Garbler holds input x and Evaluator holds input y.

2. (a) (Garbler Step 1) Prepare garbled circuit for C .

(b) (Evaluator Step 1) Prepare OT queries for each bit of y.

3. Evaluator sends the OT labels for y to the Garbler.

4. (Garbler Step 2) Prepare OT responsese for the Evaluator’s inputs. �e messages will correspond to wire labels.

5. Garbler sends the OT responses for Evaluator’s input, the garbled circuit and the labels for the garbler’s own

input.

6. (Evaluator Step 2) Evaluate the garbled circuit to learn C(x, y).

Next lecture: from GC to single-key FE. Two party computation is interactive but is su�cient to realize single-

key FE. It also can only realize single-key FE since GC is not reusable.

We will rely on using a ”universal circuit” U that takes the circuit C and input x both as inputs and outputs C(x):

U(C, x) = C(x).

Ciphertext will be a garbled circuit for U with wire labels for x. �e function key for C will allow one to

non-interactively receover the wire labels for C . Decryption will be a GC evaluation.

58

CS 395T: Topics in Cryptography March 30, 2022

Lecture 19: Succinct Functional Encryption

Lecturer: David Wu Scribe: Jonathan Li

In the last lecture, we saw how to use a garbled circuit and oblivious transfer (OT) to get two-party computation

(2PC). In this lecture, we will show that we can make this protocol non-interactive.

19.1 Functional Encryption from Public-Key Encryption
Suppose we start with our 2PC protocol.

2PC : Alice(x)
OT message←−−−−−−−−−−−−−−−−−

(request for wires of y)

Bob(y)

garbled circuit−−−−−−−−−−−−−−−−−→
wires for x

OT response

evaluate to learn

y
C(x, y)

Now consider this FE se�ing.

FE : Alice(x)
Encrypt(pk,x)−−−−−−−−−−−→ Bob(f) ← skfy

f(x)

One way to evaluate something while hiding information is by garbling it. �us, instead of sending Encrypt(mpk, x),

Alice could send a garbled circuit that has x embedded inside it. Bob can then a�empt to evaluate the circuit to learn

f(x), but this requires knowledge of all the garbled gates and input labels. Alice also has no knowledge of f , so she

has no idea what function she is going to garble.

�e solution is to use a universal circuit. A universal circuit U takes as input (C, x) and outputs C(x). We can

also de�ne a restricted universal circuit Ux that takes as input C and outputs C(x). We modify the above so that

Alice sends (Ũ , {`(k)
i })← Garble(1λ, Ux) instead of Encrypt(mpk, x). Alice cannot send all the wires labels since

Bob could then evaluate the identity function to reveal Alice’s entire input. In 2PC, this problem was solved through

oblivious transfer. To make this protocol non-interactive, we use a public key encryption scheme.

Let ` = |C| denote the number of input bits to U associated with the circuit C . Let

mpk :

[
pk

(0)
1 · · · pk

(0)
`

pk
(1)
1 · · · pk

(1)
`

]
and msk :

[
sk

(0)
1 · · · sk

(0)
`

sk
(1)
1 · · · sk

(1)
`

]

be a pair of public keys/secret keys associated with each input wire, and let skC : (sk
(C1)
1 , . . . , sk

(C`)
`) consist of secret

keys corresponding to the bits of C .

Encrypt(mpk, x):

59

1. (Ũ , {L(b)
i }i∈[`],b∈{0,1})← Garble(1λ, Ux)

2. ct
(b)
i ← Encrypt(pk

(b)
i , L

(b)
i)

KeyGen(msk, C): give out sk
(Ci)
i

Decrypt(skc, ctx):

1. L
(Ci)
i ← Decrypt(sk

(Ci)
i , ct

(Ci)
i)

2. y ← Eval(Ũ , {L(Ci)
i })

Correctness. Follows from garbled circuit correctness and PKE correctness.

Single-Key Security. Consider the challenge ciphertext

ct =

[
ct

(0)
1 · · · ct

(0)
`

ct
(1)
1 · · · ct

(1)
`

]
.

By PKE security, we can replace one entry in each column with an encryption of 0. Since KeyGen only gives

out one key for each column, security follows by semantic security of PKE. By garbling security, there exists an

e�cient simulator S(1λ, 1|Ux|, C(x)) → (Ũ , L
(Ux,i)
i) that can simulate ciphertexts given only (C,C(x)). In the

indistinguishable-based FE security game, the adversary must choose x0 and x1 such that C(x0) = C(x1). �us it

does not ma�er whether we started with x0 or x1.

Caveats.

• Single-key implies Q-key for any bounded Q = poly(λ) by a combinatoric construction known as “MPC-in-

the-head”, so ciphertexts scale with Q.

• It is di�cult to achieve a fully collusion resistant FE.

Ideally, ciphertext size is independent of (or sublinear in) size of functions. We consider the following stronger

notions:

1. Succinct FE: running time of encryption is independent of (or depends only on depth, so sublinear in) size of

supported functions

2. Compact FE: running time of encryption is independent of (sublinear in) both size and output length of

supported functions.

Single-key compact functional encryption for log-depth circuits implies indistinguishability obfuscation (“crypto-

complete”). In particular, single-key compact FE implies fully collusion resistant FE.

Open�estion. Can we get compact FE from LWE?

19.2 Succinct FE from Garbled Circuits, ABE, and FHE
We show how to construct succinct FE. �e goal is to have the ciphertext size be sublinear in the size of the circuit

being evaluated. We �rst tweak the ABE scheme to encrypt two messages µ0 and µ1:

• if f(x) = 0, decryption outputs µ0, which can be built from vanilla ABE by encrypting µ0 under f and µ1

under f .

• if f(x) = 1, decryption outputs µ1.

60

Now the idea is to use FHE to encrypt x. Given an encryption of x, we can evaluate an encryption of f(x). We

also give out a garbled circuit that implements FHE decryption, i.e. takes (sk, ct) and outputs Decrypt(sk, ct). We

will use ABE to communicate the wire labels:

ctABE ← ABE.Encrypt(mpkABE, ctx, L
(0)
i , L

(1)
i).

�us the ciphertext consists of a garbled circuit for FHE decryption circuit, wire labels for FHE secret key, and ABE
encryptions of wire labels of FHE ciphertext, where each bit uses an independent ABE scheme.

To generate a key for function f , give out ABE keys for each gi, where gi is de�ned as the function that takes ct
and outputs the ith bit of FHE.Eval(f, ct).

To decrypt,

1. use skg1 , . . . , skg` to recover labels for ctf(x) ← Eval(f, ctx);

2. evaluate the garbled circuit to get f(x)← FHE.Decrypt(sk, ctf(x)).

Succinctness. We analyse the size of each component of the ciphertext.

1. Garbled circuit for FHE decryption. �is has size poly(λ, d) where d is the depth of the computation.

2. Wire labels for FHE secret key. �is has size |sk| · poly(λ) = poly(λ, d).

3. ABE encryptions of wire labels of FHE ciphertext. �is has size ` · poly(λ, d) = poly(λ, d).

It follows that the overall ciphertext size scales with depth rather than size, so this is succinct FE. Note, however, that

this is not compact FE.

Single-Key Security. Follows from ABE security, then garbling security, then FHE security.

In summary, we can use garbled circuits and PKE to obtain single-key, non-succinct FE. We can also use garbled

circuits, ABE, and FHE to obtain single-key, succinct FHE. Next week, we will revisit zero-knowledge and discuss

how to get non-interactive zero-knowledge (NIZK) from LWE.

61

CS 395T: Topics in Cryptography April 11, 2022

Lecture 20: Designated-Veri�er NIZKs

Lecturer: David Wu Scribe: Kristin Sheridan

20.1 Recap
• Functional encryption is a generalization of public key encryption in which we have �ne-grained access control

to encrypted data

• Steps that we went through along the way:

– A�ribute-based encryption

– Predicate encryption

– Functional encryption

• Now we switch focus to look at a dual of this problem, where we focus on integrity by looking at zero knowledge

proofs

• Final goal over the next couple weeks: NIZK from LWE

– �is problem was solved in 2019, but it was open for a decade before that

20.2 Interactive Zero-Knowledge Protocol for Graph Hamiltonicity
First, recall a couple de�nitions that we will use going forward:

De�nition 20.1. A graph is Hamiltonian if there exists a cycle that visits every node exactly once.

De�nition 20.2. A Σ-protocol is a 3 round interactive honest-veri�er zero knowledge (ZK) proof system. (Recall

that an honest veri�er does not choose its message in this proof maliciously.)

• �e Hamiltonian cycle problem is NP-complete, and we will �rst construct a Σ-protocol for this problem and

thus all of NP

• Last semester, we had a Σ-protocol for 3-coloring, which is also NP-complete, but the properties of this protocol,

also known as Blum’s protocol, will lend themselves be�er to our goal of designated veri�er NIZKs

• Our scheme below assumes a statistically binding and computationally hiding commitment scheme, which we

know we can get from previous lectures

• Blum’s protocol:

1. �e prover samples a random permutation of the vertices in the graph π ← Perm[V] and considers the

graph constructed by applying this permutation to the vertex labels

2. �e prover commits to the edges in the permuted graph

– Speci�cally, ∀i, j ∈ [n], if (i, j) ∈ E, Cπ(i),π(j) ← Commit(1) and otherwise Cπ(i),π(j) ←
Commit(0)

3. All commitments Ci,j are sent to the veri�er

4. �e veri�er selects a random bit b ∈ {0, 1} and sends it to the prover

62

5. If the prover receives the bit b = 0, it uses its witness that is a Hamiltonian cycle in the graph (which it

must know if this is a good instance) and sends back openings for all edges in that cycle

6. If the prover receives bit b = 1, it sends openings for all edges it commi�ed to and the permutation it used

– Completeness: by construction; if you’re honest you can always answer correctly

– Soundness:

∗ SupposeG does not have a Hamiltonian cycle, and we divide the possible scenarios into two exhaustive

cases:

1. �e prover commits to a graph G′ 6= π(G) for some permutation π (ie it commits to a fake

graph); in this case, if b = 1 the prover must fail because it except with small probability the

openings will be to the same edges it commi�ed to (due to statistical binding property this holds

even for an unbounded prover), but since it commi�ed to a bad graph there is no permutation to

explain those openings/convince the veri�er to accept. �us, in this case Pr[prover succeeds]

≤ 1
2

2. �e prover commits to G′ = π(G) for some permutation π; in this case if b = 0 the prover

cannot succeed since there does not exist a Hamiltonian cycle in the permuted graph. Except with

negligible probability, it gives the veri�er the same openings it commi�ed to and thus cannot

give it openings to a Hamiltonian cycle. �us, we again get Pr[prover succeeds] ≤ 1
2

∗ �us, if G does not have a Hamiltonian cycle, then the probability of the prover succeeding is upper

bounded by 1/2 no ma�er what. If this is repeated λ times, then it is bounded by 1/2λ.

– Honest veri�er zero knowledge (note that honest veri�er that we need for our conversion to NIZK so we

just focus on proving this)

∗ �e simulator will act as follows:

1. Sample b r← {0, 1}.
2. If b = 0, commit to all 1s for the Ci,j . For the last part, open any permutation of the n nodes you

want

3. if b = 1, choose a random permutation and commit to π(G). For the last part, open all commit-

ments

4. Output the commitments Ci,j , b, and the appropriate openings for the chosen bit

∗ Note that as usual in creating a ZK simulator, we reordered when certain things were picked, namely

we picked b before making a commitment

∗ We now just need that this distribution looks like the distribution of a protocol transcript to any

computationally bounded veri�er.

· We see that the distribution of the choice of b is correct

· When b = 1, the distribution of the commitments and openings are also correct, as we proceed

exactly as in the protocol

· When b = 0, the opened values do in fact reveal a random cycle; since the original protocol

had a �xed cycle and randomly permuted the labels, this distribution is correct. �us, we are

just le� with the distribution of the commitments; however, if the commitment to all 1s was

computationally distinguishable from an appropriate commitment, the commitment scheme

would not be computationally hiding, so we are le� with the fact that the distribution we have

here is computationally indistinguishable from the correct one

• Why do we look at this speci�c protocol? Note that if we repeat the protocol λ times for a graph that does not
have a Hamiltonian cycle, then there is only one challenge (one choice of randomness by the veri�er) on which

the prover can successfully win, despite the fact that there are 2λ challenges. In the 3-coloring case from last

semester there were multiple challenges on which a veri�er could win in each round, making the the number

of successful challenges blow up with λ and making analysis harder for our ultimate goals

63

20.3 One-Time Designated-Veri�er NIZK for Graph Hamiltonicity
De�nition 20.3 (Designated veri�er NIZK). A designated veri�er NIZK consists of the following algorithms:

Setup(1λ)→ pk, sk

Prove(pk,x,w)→ π

Verify(sk,x, π)→ b′ ∈ {0, 1}

In this system, pk is a public key known to all, whereas sk is a secret key known only to the veri�er (thus requiring

that the veri�er be “designated” in order to properly verify). All regular properties of honest veri�er NIZKs must hold

(ie correctness, soudness, HVZK).

�e scenario of a DV-NIZK might be interesting in a se�ing where everyone publishes their own public key that

others can use to prove secrets them, and everyone retains a matching secret key they use for their own veri�cation.

Note that our construction here can also be extended using a common random string to extend zero knowledge to a

scenario in which the veri�er chooses the public key maliciously, but we focus on honest veri�ers here.

Now we have a construction of a one-time DV-NIZK from public key encryption (PKE). It is an analog to the

one-key FE system we created from PKE.

• Recall that when we have a Σ protocol, the prover sends a commitment to veri�er, the veri�er sends challenge,

and prover sends responses/openings

• Suppose the veri�er’s challenge is sampled from a polynomial sized space (for a single iteration in the original

protocol there were only 2 possible challenges)

• �e idea we will use is that we will have a public key for each possible challenge, and we will encrypt all
possible responses but ensure that the veri�er can only open appropriate ones. In particular this construction

assumes that each round of the protocol has only two possible challenges (though can be easily extended to

any polynomial number of challenges in each round) and λ rounds are completed.

– Setup(1λ)

1. ∀i ∈ [λ],∀b ∈ {0, 1}: (pk
(b)
i ,sk

(b)
i)← PKE.Setup(1λ)

2. pk←

[
pk

(0)
1 pk

(0)
2 · · · pk

(0)
λ

pk
(1)
1 pk

(1)
2 · · · pk

(1)
λ

]
3. Sample a challengeb1, . . . , bλ ← {0, 1}λ at random

4. sk← (b1, b2, . . . , bλ, sk
(b1)
1 , sk

(b2)
2 , . . . , sk

(bλ)
λ)

5. Output (pk,sk)

– Prove(pk,x,w)

1. Following the Σ-protocol, construct the �rst message σi for λ simulations of the �rst round of the

Σ-protocol.

2. z
(b)
i is set to be the response a prover would give in in the Σ-protocol with �rst message σi if the

veri�er picks challenge b

3. ct
(b)
i ← PKE.Encrypt(pk,z

(b)
i)

4. Output (σ1, σ2, . . . , σλ, ct
(0)
1 , ct

(1)
1 , . . . , , ct

(1)
λ)

– Verify(sk=(b1, b2, . . . , bλ, sk
(b1)
1 , sk

(b2)
2 , . . . , sk

(bλ)
λ),x, π = (σ1, σ2, . . . , σλ, ct

(0)
1 , ct

(1)
1 , . . . , , ct

(1)
λ))

1. ∀i ∈ [λ]: z
(bi)
i ← PKE.Decrypt(sk

(bi)
i , ct

(bi)
i)

2. ∀i ∈ [λ]: Check that (σi, bi, z
(bi)
i is an accepting transcript; output 1 if so and 0 otherwise

• Correctness: by construction

64

• Soundness: comes directly from soundness of the Σ protocol

• HVZK: we construct a simulator as usual, which we denote S(1λ, x)

1. Use HVZK simulator S′ for the simulator protocol to generate λ transcripts (σi, bi, z
(bi)
i)

2. ∀i ∈ [λ],∀b ∈ {0, 1} : (pkbii , sk
(bi)
i)← PKE.Setup(1λ); let ski ← sk

(bi)
i

3. pk←

[
pk

(0)
1 pk

(0)
2 · · · pk

(0)
λ

pk
(1)
1 pk

(1)
2 · · · pk

(1)
λ

]
4. sk← (b1, b2, . . . , bλ, sk

(b1)
1 , sk

(b2)
2 , . . . , sk

(bλ)
λ)

5. ∀i ∈ [λ]: ct
(bi)
i ← PKE.Encrypt(pk

(bi)
i , zi) and ct

(1−bi)
i ← PKE.Encrypt(pk

(1−bi)
i), 0)

6. Output pk, sk, and π ← (σ1, σ2, . . . , σλ, ct
(0)
1 , ct

(1)
1 , . . . , , ct

(1)
λ)

• �e only di�erence between the real transcript and this one is that the real transcript has all 0s encrypted for

the responses that are not checked (the responses we don’t hand out the secret keys for); however, PKE security

says that we can’t distinguish when we’ve encoded the 0s string vs another string (try replacing the messages

one at a time via hybrids to get the whole proof)

Notably, the system we have here is one-time use only. A reusable system would let a single veri�er check proofs

on multiple inputs and retain all the same properties. However, we see that soundness fails, as in order for soundness

to make sense in a version where a veri�er is reused, we want to give oracle access for the veri�er to the prover (to

model the fact that it could see acceptances/rejections on previous tries). In particular, we can construct an a�ack on

this concept of soundness in the following way, via a veri�cation rejection a�ack:

• �e prover starts with valid proof of a good statement and a grid of openings for this that are all honestly

generated, and the veri�er will accept

• �e prover repeats this but for each i, it replaces ct
(0)
i with PKE.Encrypt(pk

(0)
i ,⊥) (keeping all other values

the same)

– If the veri�er rejects this modi�ed proof, we know that bi = 0 since the veri�er is actually decrypting the

new ciphertext

– If the veri�er accepts this modi�ed proof, we know that bi = 1 since the veri�er is not actually decrypting

the new ciphertext

How can we extend this to get reusability? In the interactive se�ing, soundness came from having a fresh,

unpredictable challenge every time, but the challenge has become �xed by becoming non-interactive. How can we

get something fresh and unpredictable every time without le�ing the veri�er contribute to the challenge?

We will do this in upcoming classes, but as a hint: replace public key encryption with a�ribute-based encryption

to see if you get something useful and combine with a pseudorandom function.

65

CS 395T: Topics in Cryptography April 6, 2022

Lecture 21: Reusable Designated-Veri�er NIZKs

Lecturer: David Wu Scribe: Garre� Gu

21.1 Reusable Designated-Veri�er NIZKs
What we found in the previous lecture is that if the a�acker is given oracle access to the veri�er, they can cra� fake

proofs to leak the challenge bit by bit. �en the underlying Σ protocol is trivially broken, and the a�acker can cra�

proofs of arbitrary statements. �is is known as a veri�er rejection a�ack.

We would like to construct a non-interactive protocol that has reusable soundness. In our se�ing, the veri�er

starts with a random string generated at setup time, and the prover sends statements and proofs for the veri�er to

check. So we end up with a problem: the veri�er cannot participate in the protocol, but it must still somehow inject

fresh randomness into the protocol as new statements come in.

Prover Veri�er

x, π

x′, π′

Construction overview. Our basic idea is to use a�ribute-based encryption combined with a pseudorandom

function to create a fresh challenge every time. Suppose we have a PRF:

F : K × ([λ]× {0, 1}n)→ {0, 1} (21.1)

�en F (k, (i, x)) denotes the ith challenge input for a proof of statement x. �e reason why the base scheme fails

is because the same challenge is used to verify both false and true statements. �us, if we base the random strings on

a PRF evaluated on the statement itself, information gained from verifying a true statement does not translate to

gaining information about a false statement.

Note that the prover cannot be the one evaluating the PRF, since the prover would have to have the key and

break randomness. But how can we get the veri�er to derive the challenge from the PRF without participating in the

scheme? �e high-level idea is to use homomorphic evaluating to evaluate the PRF at veri�cation time. We can use

a�ribute-based encryption to do this.

De�ne the function fi∗ . �is function will be used to enforce the invariant from last lecture that only one

ciphertext from each column can be decrypted at a time, and only according to the corresponding bit in the challenge

string.

fi∗(x, i, b) :=

{
0 if F (k, (i, x)) = b and i = i∗

1 otherwise

(21.2)

21.2 Construction based on ABE
We construct the designated-veri�er NIZK as follows:

• Setup(1λ):

– Let k r← K where K is the keyspace of a PRF.

– Let (mpk,msk)← ABE.Setup(1λ).

– Let ski ← ABE.KeyGen(msk, fi,k) for each i ∈ [λ].

66

– Output pk = mpk and sk = (sk1, ...skλ, k).

• Prove(pk, x, w):

– Construct the �rst message of the Σ-protocol, σ1, ...σλ.

– For each σi, compute responses z
(0)
i and z

(1)
i to be the responses associated with challenge bits 0 and 1

respectively.

– Compute ct
(b)
i ← ABE.Encrypt(mpk, (x, i, b), z

(b)
i).

– Output π = (σ1, ..., σλ, ct
(0)
1 , ct

(1)
1 , ..., ct

(0)
λ , ct

(1)
λ)

• Verify(sk, x, π):

– Let bi ← F (k, (i, x)) for each i ∈ [λ].

– Compute z
(bi)
i ← ABE.Decrypt(ski, ct

(bi)
i) for each i ∈ [λ].

– Verify that (σi, bi, z
(bi)
i) is valid for each i ∈ [λ].

Completeness. First we note that completeness holds for this scheme. By de�nition fi(x, i, b) = 0 whenever

bi = F (k, (i, x)), so the veri�er is able to decrypt z
(bi)
i for each i ∈ [λ]. �us completeness follows from the

underlying HVZK scheme.

Zero-knowledge. Now let’s prove zero-knowledge of the protocol. First note that for all i, j ∈ [λ], fi(x, j, b) = 1
when b = 1− F (k, (i, x)). �erefore, in each column, at least one entry can be replaced with the encryption of the

all-zeros string by ABE security.

Soundness. Now we sketch an argument for soundness.

Prover (adversary) Veri�er (challenger)

x, π
If x /∈ L, then the veri�er uses a uniform, unnpre-

dictable challenge b to check π; thus, soundness re-

duces to Σ-protocol soundness

�e challenge that was generated when x /∈ L is just as good as the uniformly random challenge generated in the

interactive case.

However, we actually hit a problem with soundness in this protocol. If the adversary is able to query the veri�cation

oracle, the output of the decryption oracle in the invocation of ABE.Decrypt could leak information about ski, which

contains information about the PRF key.

�erefore, we must �gure out a way to argue that the PRF key cannot be leaked through the ABE.Decryptcall,

even though the ciphertext is controlled by the adversary.

First note that if the prover were honest (all ciphertexts are honestly generated), we wouldn’t have any issue.

�is follows by correctness of the ABE scheme, since if the key is able to decrypt at all, it would decrypt to the

corresponding z
(b)
i with probability 1, and thus we would never leak any information about the PRF key.

Now’s a good time to bring up a major open question in cryptography. Given a black box CPA-secure cryptosystem,

is it possible to construct a CCA-secure cryptosystem? In our case, we have a CPA-secure ABE encryption scheme,

but is it possible to build a CCA-secure cryptosystem with this? We don’t know the answer generally, but it turns out

that the la�ice-based ABE encryption we constructed can be easily tweaked to achieve CCA security.

67

Recall that an ABE ciphertext has form:

sTA+ error

sT [B1 − x1G|...|Bl − xlG] + error

sT p+ µ×
⌊q

2

⌉
+ error

Now let the secret key for function f be Tf , which is a trapdoor for [A|Bf] ([A|Bf] · Tf = G), where Bf =
[B1|...|Bl] ·Hf .

Now decryption is performed as below:

(sT [B1 − x1G|...|Bl − xlG] + error)Hf,x

≈sT (Bf − f(x) ·G)

=ST [A|Bf] when f(x) = 0

Using this and the trapdoor, we can compute

sT [A|Bf] · Tf + error

=sTG+ error

And we can recover s, the encryption randomness, by solving LWE. We can also recover the errors in the

ciphertext, and check that the errors are su�ciently small. If the errors are small enough, then we have correctness,

since every decryption will be successful.

To summarize, decryption introduces a ciphertext validity check with the guarantees:

1. If validity check passes, then decryption with skf can be simulated by decrypting with mskor an all-zeroes key.

2. If the validity check does not pass, then decryption always returns ⊥.

So we have erased the PRF key from the output of the decryption oracle, and we can replace the PRF with a black

box. �us, using our modi�ed ABE encryption scheme, we can reduce soundness of the protocol to soundness of the

underlying Σ-protocol.

21.3 Publicly-Veri�able NIZKs
Now, what about public veri�cation. First, let’s recall an approach from last semester on the random oracle model:

Prover Veri�er

Commitment σ

Challenge c

Response z

Now, to get rid of the interaction and get a NIZK, we can simply derive c ← H(x, σ) where H is modeled as

a random oracle. �is challenge is only determined a�er the prover has selected a commitment and is therefore

unpredictable.

But the ROM is a bit idealistic. In practice, we just instantiate the random oracle with a cryptographic hash

function (like SHA-256). We cannot prove security since SHA-256 is not truly a random oracle, but we don’t know of

any a�acks.

But can we identify some condition of a hash function that can be used to prove security?

68

�is brings us to the notion of correlation-intractability, which we will explore in more depth next lecture.

LetR(x, y) be a binary relation. We say that a hash functionH : X → Y is correlation-intractable for the relation

R : X × Y → {0, 1} if no e�cient adversary can �nd an x ∈ X such that

R(x,H(x)) = 1

Intuitively, this correlation-intractability property is useful because for any statement x /∈ L, we can de�ne a

BadChallenge binary relation Rx where Rx(σ, c) = 1 if there exists some z such that

Verify(x, (σ, c, z)) = 1

If we have a correlation-intractable hash function on this relation, then the adversary is prevented from �nding a

σ, c that causes the veri�cation to pass, and we’re good to go!

69

CS 395T: Topics in Cryptography April 11, 2022

Lecture 22: Correlation-Intractability and NIZKs

Lecturer: David Wu Scribe: Alexander Burton

22.1 Recap
Recall the general form of a Σ-protocol. �e prover sends a �rst message σ (usually a description of the statement and

initial commitments), the veri�er sends a challenge c (typically, at random), and the prover responds to the challenge

in z.

Prover Veri�er

σ−→
c←−
z−→

Given a Σ-protocol, we want to construct a non-interactive zero knowledge (NIZK) protocol. �e sticking point is

that we need a random challenge string for soundness, but the veri�er cannot participate to generate the challenge.

How can we ensure that the prover’s challenge is random? One idea is to use the random oracle model, and apply the

random oracleH to σ.

Prover Veri�er

σ−→ c← H(σ)
c←−
z−→

To avoid using a random oracle, it turns out we can use a hash function H(hk,−) with the following property.

De�nition 22.1. LetR : X × Y → {0, 1} be a binary relation. We say a hash function H : X → Y is correlation-
intractable (c.i.) with respect toR if no e�cient adversary can �nd x ∈ X such thatR(x,H(x)) = 1.

22.2 NIZKs from Circular-Secure FHE
For x 6∈ L, we de�ne the “bad challenge” relation withRx(σ, c) = 1 i� there exists z such that

Verify(x, (σ, c, z)) = 1.

It is clear that anyH that is correlation-intractable forRx results in information-theoretic soundness for the statement

x. More explicitly, we have the following NIZK protocol:

Construction 22.2 (NIZK from Correlation-Intractable Hash Function).

• Setup
(
1λ
)
: Sample hk← CI.Setup

(
1λ
)
.

• Prove(hk, x, w): Compute σ ← [Σ �rst message], c ← H(hk, σ), z ← [Σ response for (σ, c)]. Output π ←
(σ, z).

• Verify(hk, x, π = (σ, z)): Compute c← H(hk, σ), then use Σ veri�cation for (σ, c, z).

70

Completeness follows from the base Σ-protocol, since given a true statement we can always respond to the

challenge c, regardless of how it is generated. Soundness is immediate and information-theoretic (assuming H(hk,−)
is c.i. forRx) since by de�nition there does not exist a z where Verify(x, (σ, c, z)) = 1.

As is, zero-knowledge does not follow from zero-knowledge of the Σ-protocol: the Σ-protocol’s simulator produces

transcripts where c is sampled at random and independent of x, σ, but in the above protocol c depends on x, σ. To

�x this, we generate a shi� ρ r← {0, 1}n to be included in the crs = (hk, ρ). �e challenge is then computed as

c← H(hk, σ)⊕ ρ. �e simulator then does the process in reverse, �rst obtaining (σ, c, z) from the base simulator,

and then computing ρ ← H(hk, σ) ⊕ c. Observe that since c is uniform over {0, 1}n, so is ρ, so this induces the

desired distribution.

22.2.1 Correlation-Intractability for Search Relations
It remains to explicitly construct a c.i. hash function (CIHF) for e.g. Blum’s Protocol for graph hamiltonicity. Recall

the general structure of (repeated) Blum’s Protocol:

Prover Veri�er

commits to πi(G)−−−−−−−−−→
b
r←{0,1}λ←−−−−−−

if bi = 0: open πi−−−−−−−−−−→
if bi = 1: open cycle

A key property that makes Blum’s protocol easier to work with is that for every choice of �rst message σ, there is

a unique bad challenge string out of the challenge space {0, 1}λ (assuming statistically binding). To this end, we can

de�ne a so-called search relation: for any x, there exists a unique y such thatR(x, y) = 1; de�ne f(x) = y. Clearly,

the bad challenge relation for Blum’s protocol induces a search relation. However, it is unclear how to ensure that the

search relation is e�ciently computable from the commitments. To �x this, we can use an extractable commitment

scheme—one in which we can extract the commi�ed values given a trapdoor. We have already constructed such a

scheme in the past: GSW.

We can now a�empt to construct a CIHF for a search relation f : {0, 1}k → {0, 1}n as follows.

Construction 22.3 (Candidate CIHF for Search Relations). (Warning: this construction is broken!)

• Setup
(
1λ, f

)
: set hk← f .

• Eval(hk = f, x): compute and output H(hk, x) := f(x)⊕
(
0n−1‖1

)
. (�is is �ipping the last bit of f(x))

�is construction is c.i. information theoertically. Indeed, H(hk, x) 6= f(x) by construction, soR(x,H(hk, x)) =
0 necessarily. However, it is not suitable for our purposes. �e problem is that the hash key is public, which leaks f ,

completely breaking the hiding property necessary for soundness. However, a clever insight lets us �x this problem:

we can use homomorphism to hide the evaluation of f !

Construction 22.4 (CIHF for Search Relations from Circular-Secure FHE).

• Setup
(
1λ, f

)
: First sample

(pk, sk)← FHE.KeyGen
(
1λ
)
.

Compute ct← FHE.Encrypt
(
pk, 0|f |

)
. Output hk← (pk, ct).

• Eval(hk = (pk, ct), x): compute and output H(hk, x) := FHE.Eval(pk,Ux, ct). Here, for x ∈ {0, 1}k we

denote the universal circuit as Ux(f)→ f(x).

Claim 22.5. �e above construction is a CIHF for any e�cient search relation f .

71

Proof. We use a hybrid argument. Hyb0 is the real game:

Adversary Challenger

(pk, sk)← FHE.KeyGen
(
1λ
)

ct← FHE.Encrypt
(
pk, 0|f |

)
hk=(pk,ct)←−−−−−

x−→ Check f(x) = H(hk, x)

Hyb1 is constructed as follows. First de�ne

f ′(x) := FHE.Decrypt(sk, f(x))⊕
(
0n−1‖1

)
,

where we treat the output ofFHE.Decrypt as a bitstring. �e game is identical, except we sample ct← FHE.Encrypt(pk, f ′).

We can see that Hyb0

C
≈ Hyb1 by circular security, since f ′ depends on sk.

We now claim that in Hyb1, c.i. follows statistically: i.e. there does not exist x where f(x) = H(hk, x). Indeed,

assume for the sake of contradiction such an x exists. �en

f(x) = H(hk, x)

= FHE.Eval(pk,Ux, ct)
= some FHE.Encrypt (pk,Ux(f ′))

= some FHE.Encrypt (pk, f ′(x))

= some FHE.Encrypt
(
pk,FHE.Decrypt (sk, f(x))⊕

(
0n−1‖1

))
.

Applying FHE.Decrypt(sk,−) to both sides yields

FHE.Decrypt(sk, f(x)) = FHE.Decrypt (sk, f(x))⊕
(
0n−1‖1

)
,

but this is a contradiction.

Observe that unlike the broken construction, f is hidden because (pk, ct) are independent of f in the real security

game.

72

CS 395T: Topics in Cryptography April 13, 2022

Lecture 23: NIZKs from LWE

Lecturer: David Wu Scribe: Steven Xu

23.1 Wrapup of NIZKs from FHE
Now that we have a CIHF, all we have to do is show that the search function f(x) is e�ciently computable (given a

certain trapdoor) when using an extractable commitment (GSW). �e GSW extractable commitment scheme works as

follows. First, we sample a GSW keypair (pk, sk) = (A, s):

A =

[
A

sTA+ eT

]
, s = [−s | 1] where A

R←− Zn×mq , s
R←− Znq , e

R←− χm.

�e veri�er is sent the public key A. For a bit µ, the commitment is AR+ µ ·G for R
R←− {0, 1}m×m—the same as

the GSW encryption of µ. To open a commitment, the prover reveals the value of R, allowing the veri�er to compute

(AR+ µ ·G)− (AR) = µ ·G and therefore µ.

Our variant of Blum’s protocol for a graph (V,E) then works as follows:

1. Prover samples a permutation of the nodes π
R←− Perm[V], as well as a GSW keypair (A, s).

2. Prover sends the public key A and commits to π as well as the edges {eij}ij of the permuted graph, yielding

cπ and {cij}ij respectively.

3. �e veri�er chooses a random bit b
R←− {0, 1} which it sends to the prover.

4. If b = 0, the prover opens π as well as all the edges. If b = 1, the prover opens only the edges which are a part

of the Hamiltonian cycle.

In the repeated version of the above protocol, we can then compute the bad challenge given the trapdoor. First,

we use the trapdoor to decrypt all the commitments, giving us π and {eij}ij . �en for each run, the bad challenge bit

is 0 if the graph permutation π is consistent with the commi�ed edges {eij}ij , and 1 otherwise.

23.2 CIHFs from SIS
As it turns out, we can construct a CIHF without using the circular security assumption required by FHE. Below is a

construction of a CIHF using only the SIS assumption. Note that the NIZK protocol as a whole still requires the LWE
assumption to guarantee the security of the commitment scheme.

First, we de�ne some notation. Given B1, ..., Bl and f : {0, 1}l → {0, 1} we write

[B1 | ... | Bl] ·Hf = Bf , [B1 − x1G | ... | Bl − xlG] ·Hf,x = Bf − f(x)G.

If g : {0, 1}l → {0, 1}t has t output bits, we write gt to denote the tth bit of g, and

Hg = [Hg1 | ... | Hgt], Hg,x = [Hg1,x | ... | Hgt,x], [B1 | ... | Bl] ·Hg = [Bg1 | ... | Bgt] = Bg,

[B1 − x1G | ... | Bl − xlG] ·Hg,x = [Bg1 − g1(x)G | ... | Bgt − gt(x)G] = Bg − g(x)⊗G.

�en our CIHF construction is

• Setup(1λ): Sample A
R←− Zn×mq , R1, ..., Rl

R←− {0, 1}m×k, and b
R←− Znq . Let Bi = ARi, and output hk =

(b, B1, ..., Bl). l will be the description length of our function f (i.e the universal circuit from last time) and

k = n blog qc. �e Bi can be viewed as commitments to the all zeros string.

73

• Hash(hk, x): Compute BUx = [B1 | ... | Bl] · HUf ∈ Zn× k2
. Output G−1(b + BUx · G−1(z)) for some

z ∈ Znkq which will be de�ned later. �e output will make more sense once we �nish the proof.

To prove correlation-intractability for f , our bad challenge function, we will use a hybrid argument. Hyb0 will

be the real game, and Hyb1 will be the same except with Bi = ARi + fiG. �e two are indistinguishable by the

le�over hash lemma.

Suppose an adversary can �nd x such that Hash(hk, x) = f(x) in Hyb1. �en we have

f(x) = Hash(hk, x) = G−1(b+BUx ·G−1(z))

G · f(x) = b+BUx ·G−1(z)

= b+ (BUx − f(x)⊗G+ f(x)⊗G) ·G−1(z)

= b+ ([B1 − f1G | ... | Bl − flG] ·HUx,f + f(x)⊗G) ·G−1(z)

= b+A[R1 | ... | Rl] ·HUx,fG
−1(z) + (f(x)⊗G)G−1(z)

= b+Av + (f(x)⊗G)G−1(z).

Notice that since v is short, if we can somehow get (f(x)⊗G)G−1(z) = G · f(x) with a clever choice of z, then we

would have Av = −b, an ISIS solution (recall that b is random).

We start by rearranging our nk-dimensional vector z into a k × n vector Z , going row �rst. Let ZTi denote the

ith row of Z , and let f (i)(x) denote the ith output bit of f(x). �en

(f(x)⊗G)G−1(z) = [f (1) ·G | ... | f (k) ·G] ·G−1(z)

=

f (1) ·G ·G−1

z1

...
zl

 | ... | f (k) ·G ·G−1

z(k−1)l

...
zkl

=

f (1) ·

z1

...
zl

 | ... | f (k)

z(k−1)l

...
zkl

=

z1 ... z(k−1)l

...
zl ... zkl

 · f(x).

�is means that if we want (f(x) ⊗ G)G−1(z) = G · f(x), we can simply choose z such that the matrix of zi’s
produced above is G. �us our CIHF construction is secure under the SIS assumption.

74

CS 395T: Topics in Cryptography April 18, 2022

Lecture 24: Multi-Key Fully Homomorphic Encryption

Lecturer: David Wu Scribe: Yingchen Wang

Fully Homomorphic Encryption as we have seen so far, computation is possible for data encrypted under a single

secret key. Any user can generate public key and secret key pair (pk, sk), where they can encrypt a data and under

the public key pk: ct = Encrypt(pk,m). Later user can give the ct to someone, who can update the ciphertext with

arbitrary function: ct’ = Eval(f,ct). �e ct’ can be decrypted by the user under the secret key sk: Decrypt(sk, ct’),
which will give the user f(m).

�e above is the single user se�ing for Fully Homomorphic Encryption. However in practice it is not always

going to be the case that one party always hold the secret key for Fully Homomorphic Encryption scheme. In fact,

in many se�ings it can be problematic for one party to always hold the secret key, because the capability of one

decryption scheme is controlled by one party completely. Ideally, we would want to have multiple parties, where

each of them has the ownership of their own data and still we enable computation on top of that. What if we have

ciphertext encrypted under di�erent keys?

24.1 Application: Two-Round Multiparty Computation
Suppose we have 3 parties: P1, P2, and P3, where the 3-party se�ing is a simpli�ed version of thousands-party

se�ing:

1. �ree parties will each have their own input: P1(x1), P2(x2), P3(x3).

2. �en each pair of parties will exchange a sequence of messages so that in the end all of the parties learn

f(x1, x2, x3), where f is an arbitrary function.

An application of Multi-Party computation can be auction system. In Denmark, sugar beet auction is run with as

a Multi-Party computation, where all prices are ensures to be hidden until all bidders submi�ed their prices.

24.2 Two-Party Computation from FHE
For 2-party Multi-Party computation, FHE is su�cient. Suppose we have 2 parties: P1, P2.

1. Party 1 will generate (pk, sk) for their FHE scheme, and send over (pk, Encrypt(pk, x1)) to Party 2.

2. Party 2 will homomorphically compute the function with x2: Encrypt(pk, f(x1, x2)) and send it to Party 1.

3. Party 1 can decrypt Encrypt(pk, f(x1, x2)) with sk to learn f(x1, x2).

Party 2 in this case rely on Party 1 to learn the output f(x1, x2). Can we have a protocol that ensures that either

all parties learn the output or no party learns the output? �is is a notion called fairness. Achieve fairness for

Multi-Party computation in a general se�ing is impossible. We will show a weaker se�ing, where all parties behave

honestly.

What if there are 3 parties and then they try to extend the above protocol by:

1. Party 1 will generate (pk, sk) for their FHE scheme, and send over (pk, Encrypt(pk, x1)) to Party 2.

2. Party 2 will compute the encryption of x2: Encrypt(pk, x2) and send it with (pk, Encrypt(pk, x1)) to Party 3.

3. Party 3 will homomorphically compute the function with x3: Encrypt(pk, f(x1, x2, x3)).

�e issue with above scheme is that: If Party 1 and 3 collude, Party 3 can give Party 1 Encrypt(pk, x2). Since Party 1

has the sk, Party 2’s input is revealed.

75

24.3 Multi-Key Fully Homomorphic Encryption
Setting.

1. Each party Pi will sample their own public key and secret key pki, ski. �en they will generate a ciphertext cti
which is the encryption of their input under their own key: Encrypt(pki, xi). �e cti is broadcast to everyone.

2. Every party P1, …, PN will homomorphically function f on ct1, …, ctN , which produces an encryption of

f(x1, ..., xN).

3. Now parties decrypt to learn f(x1, ..., xN).

Now the question is: what to decrypt? which key to use? We don’t want a single party or a subset of parties to be

able to decrypt with their own key. �e decryption should require sk1, …, skN .

�e goal is: We want to build a FHE scheme where anyone can generate their own public key, and publish their

own ciphertext. Anybody can take any collection of ciphertext encrypted under independently generated keys, and

still is able to produce a ciphertext that somehow can be decrypted.

Syntax. We start by de�ning the syntax of a multi-key FHE scheme:

• Setup(1λ)→ crs, where crs is a uniform random string.

• KeyGen(crs)→ (pk,sk)

• Encrypt(pk, x)→ ct

• Eval(pk1, …, pkN , ct1, …, ctN , C)→ ct’

• Decrypt(sk1, …, skN , ct’)→ x

Correctness. For all x1, …, xN , and all circuit C, if you :

• crs←− Setup(1λ)

• (pki, ski)←− KeyGen(crs) for all i

• cti←− Encrypt(pki, xi)

• ct’←− Eval(pk1, …, pkN , ct1, …, ctN , C)

• Decrypt(sk1, …, skN , ct’)→ f(x1, …, xN)

Compactness. —ct’— = poly(λ, d, N), where d is the depth of the circuit.

Semantic security. We have an adversary and challenger, where

• Challenger generates crs and pk and set it to adversary.

• Adversary sends back x0 and x1.

• Challenger sends back Encrypt(src, pk, xb), where b is a random coin.

• Adversary outputs b’. For e�cient adversary A: —Pr[b’=0 — b=1] - Pr[b’=1 — b=0]— = negl(λ)

76

Multi-key FHE Construction.

• �e public key is

pk = A =

[
Ā

s̄TĀ + eT

]
∈ Zn·mq

and the secret key is

s = sT = [s̄T|1] ∈ Znq ,

where the GSW invariant is that sTA = eT ≈ 0

• �e ciphertext ct : C = AR + x ·G, where R
R←− {0, 1}mt, and t = n log q. �e GSW decryption invariant is

that sTC ≈ x · sTG.

• Suppose l ciphertext are given: C1 = AR1 + x1 ·G, …, Cl = ARl + xl ·G
[C1|...|Cl]Hf = Cf , whereCf is the encryption of f(x) because [C1−x1G|...|Cl−xlG]Hf,x = Cf−f(x)G
Observe that Cf = [C1 − x1G|...|Cl − xlG]Hf,x + f(x)G =
[AR1|...|ARl]Hf,x + f(x)G =
A[R1|...|Rl]Hf,x + f(x)G.

If [R1|...|Rl]Hf,x is small, then Cf is a GSW ciphertext.

• Suppose now we have two GSW ciphertext encrypted under di�erent public keys but sharing the same Ā,

which is the crs. �e LWE secret will be di�erent (key idea).

pk1 : A1 =

[
Ā

s̄T1 Ā + eT1

]
∈ Zn∗mq , sk1 : sT1 = [s̄T1 |1] ∈ Znq

pk2 : A2 =

[
Ā

s̄T2 Ā + eT2

]
∈ Zn∗mq , sk2 : sT2 = [s̄T2 |1] ∈ Znq

C1 = A1R1 +x1 ·G, C2 = A2R2 +x2 ·G, from where we can get: C1 +C2 = A1R1 +A2R2 +(x1 +x2)·G
(we don’t know how to decrypt)

• Key idea: ”Expand” ciphertext so that they are encryptions under the joint secret key sT = [sT1 |sT2] (can be

generalized to N cases). Now it become a single-key scheme.

Given a ciphertext we can expand it: C → Ĉ so that Ĉ is a GSW ciphertext. sTĈ ≈ x1 + sTĜ, where

Ĝ =

[
G 0
0 G

]
. �is is challenging because an encryption algorithm Encrypt(crs, pk, x) can never produce Ĉ

because Ĉ depends s2, which is sampled independently form the encryption algorithm.

We solve the problem by ask Encrypt to output a hint that combines pk2 to produce Ĉ, so that during evaluation,

we can use the hint together with pk2 together with the ciphertext to produce Ĉ.

We can construct Ĉ =

[
C1 X
0 C1

]
, where X is the hint.

We need to satisfy the invariant: [sT1 |sT2] =

[
C1 X
0 C1

]
≈ [µ · sT1 G|sT1 X+ sT2 C]. We would want sT1 X+ sT2 C

to be µ · sT2 G so that the whole equation will equal to µ[sT1 |sT2]Ĝ.

• Again our goal here is: sT1 X + sT2 C ≈ µ · sT2 G, where C = AR + µG

We have A1 =

[
Ā
bT1

]
, where bT1 = s̄T1 Ā + eT1 , A2 =

[
Ā
bT2

]
, where bT2 = s̄T2 Ā + eT2 .

Now, sT2 C = [−s̄T2 |1]

[
Ā
bT1

]
R + µ · sT2 G = −s̄T2 ĀR + bT1 R + µ · sT2 G ≈ (bT2 − bT1)R + µ · sT2 G.

So that all we need to do is ensure sT1 X ≈ (bT2 − bT1)R (b1 and b2 and R are from public keys and encryption

randomness). All we need to have is that X looks like a GSW ciphertext and decrypt to (bT2 − bT1)R under sT1 .

77

�e hint will an encryption of components of R, which homomorphically compute ciphertext that decrypt to

(bT2 − bT1)R.

• To construct the hint X, we �rst construct matrix T ∈ {0, 1}m. Our goal is that given the encryption of Tij

and a public vector v ∈ Zmq , we want to construct C such that sTC ≈ vTT.

De�ne C =
∑
i∈m

∑
j∈mCij ∗G−1(Zij), where Cij = Encrypt(pk, Tij) and Z =

[
0(n−1)∗m

vie
T
j

]
(ej is the j-th

basis vector).

Observe that:

sTC =
∑
i,j∈m

sTCijG
−1(Zij)

= Tijs
TGG−1(Zij)

= sT
∑
i,j∈m

TijZ
ij

=
∑
i,j∈m

Tij [−sT|1]

[
0(n−1)∗m

vie
T
j

]
=
∑
i,j∈m

viTije
T
j =

∑
i∈m

vit
T
i = vTT,

where tTi denotes the ith row of T.

78

CS 395T: Topics in Cryptography April 20, 2022

Lecture 25: Homomorphic Secret Sharing

Lecturer: David Wu Scribe: Charlo�e LeMay

25.1 Review of Multi-Key FHE
Recall Multi-Key Fully Homomorphic Encryption discussed in the last lecture:

• Setup(1λ)→ crs

• KeyGen(crs)→ pk, sk

In our construction, Setup outputs crs = A r← Z(n−1)×m
q , and KeyGen samples s r← Znq , e← χm, and outputs

pk =

[
A

sTA+ eT

]
= A, sk =

[
−sT

∣∣ 1
]

= sT .

Each of the N participants in the scheme will receive crs, construct their own keys (Ai, si) = (pki, ski) ←
KeyGen(crs), and encrypt their messages xi by sampling Ri

r← {0, 1}m×n log q
and se�ing Ci = AiRi +xi ·G. Each

participant will publish their public key pki. �en for all j ∈ [n] \ {i}, participant i will use pkj to construct Xij

such that sTi Xij + sTj Ci ≈ xi · sTj G, using the method described in the last lecture. Participant i will expand their

ciphertext Ci into the following matrix:

Ĉi =

Ci 0 · · · 0 · · · 0
0 Ci · · · 0 · · · 0
.
.
.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

Xi1 Xi2 · · · Ci · · · XiN

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

0 0 · · · 0 · · · Ci

,

where the i-th row contains the X blocks. �is construction ensures that[
sT1
∣∣sT2 ∣∣· · ·∣∣sTN] Ĉi =

[
sT1 Ci + sTi Xi1

∣∣sT2 Ci + sTi Xi2

∣∣· · ·∣∣sTi Ci∣∣· · ·∣∣sTNCi + sTi XiN

]
≈
[
xi · sT1 G

∣∣xi · sT2 G∣∣· · ·∣∣xi · sTi ·G∣∣· · ·∣∣xi · sTNG] = xi ·
[
sT1
∣∣sT2 ∣∣· · ·∣∣sTN]G,

We want each party’s ciphertext to encrypt the corresponding xi under secret key s =
[
sT1
∣∣sT2 ∣∣· · ·∣∣sTN]. To

achieve this, let

w =

0
0
.
.
.

0
q/2

 ∈ ZnNq

and ĉti = Ĉi ·G−1 (w), and so that

sT ĉti = sT Ĉi ·G−1(w) ≈ xi · sTGG−1(w) = xi · sTw = q/2 · xi,

where the last equality holds because the last component of s is 1. �erefore ĉti is an encryption of xi, so each

participant may publish ĉti.

79

�e parties can then use all the published ĉtis to homomorphically evaluate f(x1, ..., xN), where f is whichever

function they wish to evaluate on their inputs. Suppose the outcome of this evaluation is ĉt.
Each participant must now decrypt ĉt, which would be possible with full knowledge of s:

sT ĉt ≈ f(x1, ..., xn) · q/2.

�is result could be rounded to �nd the output value. However, we cannot simply allow each participant to know

s. �is would leak the secret keys of all of the original messages, which would allow each participant to learn the

original inputs. �is entirely defeats the purpose of multi-party computation, which is supposed to allow input data

to remain private.

We get around this by noting that ĉt can be separated into blocks:

sT ĉt =
[
sT1
∣∣sT2 ∣∣· · ·∣∣sTN]T

Ĉ ′1
Ĉ ′2
.
.
.

Ĉ ′N

 = sT1 Ĉ
′
1 + sT2 Ĉ

′
2 + · · ·+ sTN Ĉ

′
N .

�erefore we can have each participant publish sTi Ĉ
′
i , and then each participant can add the published values to get

the answer.

Slight technicality: Publishing sTi Ĉ
′
i leaks information about the noise, so each participant will instead sample a

new error esmudge uniformly from some interval [−B,B], and publish sTi Ĉi + esmudge.
Summary of protocol:

1. Someone trustworthy
1

runs crs← Setup(1λ) and publishes crs.

2. Each participant runs pki, ski ← KeyGen(crs) and publishes pki.

3. Each participant constructs Ci = AiRi + xi · G, uses the public keys to expand this to a ciphertext ĉti =
Ĉi ·G−1(w), and publishes ĉti.

4. Each participant homomorphically evaluates f on ĉt1, ..., ĉtN to obtain ĉt. �ey then extract their particular

block Ĉ ′i , sample esmudge
r← [−B,B], and publish sTi Ĉ

′
i + esmudge.

5. �e participants sum sT1 Ĉ
′
1 + · · ·+ sTN Ĉ

′
N and round to obtain f(x1, ..., xN).

25.2 Secret Sharing
Secret sharing is a scenario in which we have a particular secret s that we don’t want any individual to know; instead

we wish to require the voluntary participation of n participants who hold “shares” of the secret to recover s. �is

situation has applications for certi�cate authorities, nuclear launch codes, and the Coca-Cola recipe.

One generalization is t-out-of-n secret sharing, in which any subset of t share-holders can recover the secret, but

no subset of t− 1 or fewer share-holders can recover it.

We denote the sharing algorithm by s1, ..., sn ← Share(1λ, 1n, s), where the input s is the secret to be shared,

and s1, ..., sn are the shares to be distributed. Our security notion for t-out-of-n secret sharing is as follows:

Security: �ere exists a simulator S such that for all T ⊆ [n] with |T | < t and all messages s,{
{si}i∈T : (s1, ..., sn)← Share(1λ, 1n, s)

}
apps

{
S(1λ, sn, |s|, T)

}
.

1
�e ghost of Abraham Lincoln, perhaps?

80

�is is a case in which statistical indistinguishability is actually achievable!

In the n-out-of-n case, we can simply make the shares XOR to the secret:

• Share(1λ, 1n, s) : Sample s1, ..., sn−1
r← {0, 1}`, set sn ← s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sn−1, and output (s1, ..., sn).

• Reconstruct(s1, ..., sn) : Output s← s1 ⊕ s2 ⊕ · · · ⊕ sn.

�e security of this scheme is essentially the security of the one-time pad.

In the t-out-of-n case, we exploit some properties of polynomials. �e following t-out-of-n secret sharing scheme

(with secrets taken as elements of a �eld Zp, with p prime) is a disguised version of a Reed-Solomon Code, with which

either you are familiar or you aren’t (your humble scribe isn’t), but those that were familiar were pre�y excited about

it:

• Share(1λ, 1n, t, s) : Sample a polynomial f ← Zp[x] with degree t− 1 are f(0) = s:

f(x) = s+ f1x+ f2x
2 + · · ·+ ft−1x

t−1,

where f1, ..., ft−1
r← Zp. Set si ← (i, f(i)) for i ∈ [n], and output (s1, ..., sn).

• Reconstruct({si}i∈T : |T | = t): Given the points (i1, y1), ..., (it, yt), interpolate the unique polynomial g of

degree t− 1 such that g(ij) = yj for all j ∈ T , and output g(0).

Security here follows from the fact that we cannot reconstruct a degree t− 1 polynomial with fewer than t points.

�e Reconstruct step is performed very quickly with a Number �eoretic Transform, which is a variant of the Fast

Fourier Transform that can interpolate polynomials from points in quasi-linear time. Everyone should go look up the

Number �eoretic Transform algorithm and admire its elegance.

25.3 Homomorphic Secret Sharing
As is the theme of the course, we would like to be able to perform computations on shared secrets, and this is the

purpose of Homomorphic Secret Sharing (HSS). For example, we might start with x, share it among 3 participants

as x1, x2, x3, apply the function f separately to each share to get y1, y2, y3, then recombine the shares to get

y1 + y2 + y3 = f(x). (Speci�cally we are concerned with schemes of this kind that use additive reconstruction.)

It turns out that the multi-key FHE we have described above implies a 2-party HSS protocol. �en, separately,

2-party HSS can be used to build n-party HSS. However, our construction will not work to build n-party HSS directly

from multi-key FHE (this is a homework exercise).

Construction of 2-party HSS from multi-key FHE:

• Share(1λ, xin{0, 1}`): Run crs ← MK− FHE.Setup(1λ) and sample keys (pk1, sk1) and (pk2, sk2) from

MK− FHE.KeyGen(crs). Samplex1
r← {0, 1}` and setx2 ← x⊕x1. Compute ct1 ← MK− FHE.Encrypt(pk1, x1)

and ct2 ← MK− FHE.Encrypt(pk2, x2), and output the shares (pk1, pk2, ct1, ct2, sk1) and (pk1, pk2, ct1, ct2, sk2).

To evaluate a function on the shares, use the homomorphic evaluation of the MK− FHE scheme on ct1 and ct2.

�e current multi-key FHE scheme will give shares y1 and y2 such that y1 +y2 = f(x) · q/2 + error, and therefore

round(y1 + y2) = f(x). In order to get additive reconstruction, we want to be able to split this rounded quantity up

as round(y1 + y2) = round(y1) + round(y2). �is is the part that won’t work for n > 2. We will see next lecture

how to make this spli�ing work with high probability. (Probability over what? You’ll just have to wait and see.)

81

CS 395T: Topics in Cryptography April 25, 2022

Lecture 26: Distributed Point Functions

Lecturer: David Wu Scribe: Nitesh Kartha

26.1 Recap: Homomorphic Secret Sharing
First, recall two-party homomorphic secret sharing: two parties, P1 and P2 have secret shares x1 and x2 respec-

tively where x1, x2 are secret shares of x. Each party can non-interactively evaluate functions f of x1 and x2 such

that f(x1) + f(x2) = f(x), possibly over modulus q.

In a prior lecture, we essentially showed how to get HSS from multi-key FHE, where shares are ciphertexts and

evaluation is homomorphic evalutations on those ciphertexts and partial decryption. For more information, refer to

the lecture on multi-key FHE.

However, using multi-key FHE requires rounding in order to achieve f(x) which is not ideal for secret sharing.

�erefore, we claim the following:

Claim 26.1 (round(x+ y) = round(x) + round(y) when x, y are individually uniform over Zp).

Suppose t1 + t2 = q
2 ∗ f(x) + e (modq) (like it would be for multi-key FHE) where t1, t2 are uniform and e is

small. �en, round(t1 + t2) = round(t1) + round(t2) with high probability. Refer to the lecture for a proof by picture

(essentially as long as the error does not result in the value being on the opposite side of the ”rounding boundary”,

this claim holds and this will happen with high probability).

However, one big issue remains: t1 and t2 are not uniform but are a result of multi-key FHE which will not

provide a uniform random value. �us, we cannot apply the claim directly. But, we can add a secret share for 0.

More formally, we sample δ
R←− Zp and we give δ to P1 and −δ to P2. �en, P1 computes sT1 Ĉ + δ and P2

computes sT1 Ĉ + (−δ). �erefore, the sum of the two values is still
q
2 ∗ f(x) + e BUT each share is uniform over

Zp. �us, we have shown that rounding commutes with addition for two-parties as well as two-party HSS but as a

homework exercise, you can show that this claim about rounding does not hold for three parties.

26.2 Function Secret Sharing
Now, we will focus on a particular case where we will get concrete e�ciency. First, we will talk about a dual notion

of HSS: function secret sharing (FSS). Informally FSS takes a description of a function f and split this into two

function shares f1 and f2 which can compute f1(x) and f2(x) such that f1(x) + f2(x) = f(x) for a common input

x. You can go from HSS to FSS and vice versa through a universal circuit.

We will show how to use FSS to get private database queries. First, here’s an example: imagine that you have a

database that is replicated across two database servers and a client wants to perform some query on both databases

(i.e. select ”top 10 restaurants” where ”category = Mediterranean”, compute ”average price” where data = ”tomorrow”

and from = ”Austin and to = ”NYC”, etc.). Our goal is for the client to send this query but to hide sensitive a�ributes
(i.e. the parameters of the queries like ”Mediterranean” or ”Austin or ”NYC”, etc.) Note that this scheme should work

as long as one of the database servers is not corrupted.

We will describe an approach to handling simple statistical queries using FSS. For example, consider the following

query: COUNT(column) where x1 = v1...xn = vn where we wish to hide v1....vn. We can de�ne a predicate

f(y1, ..., yn) = 1 if y1 = v1, ..., yn = vn and 0 otherwise. Using the additive property of FSS, we can break the

predicate into secret shares f1, f2 and the client one share to each server which will sum over all the function

evaluations of all entries of the database and send that back the client (i.e.

∑
f1(x1, ..., xn)) and then the client can

sum the responses to obtain

∑
f(x1, ..., xn) which is equivalent to the result of the count query.

82

26.3 Distributed Point Functions
�erefore, the key primitive that we need is a way to FSS for point functions (a function where it returns 1 at a single

point and 0 everywhere else, like the predicate we described above). Although we can do this using multi-key FHE,

this function is simple enough to have a more optimized way of doing FSS (in a two party se�ing). �is primitive is

known as a distributed point function (DPF).
�e simplest construction is known as the

√
N construction where N is the size of the domain of f and the keys

are the size

√
N (which is ine�cient but can be used to generalize a log(N) construction.

Construction 26.2 (

√
N DPF Construction).

1. Let l =
√
N . Represent a domain element as (i, j) where i, j ∈ [l] (essentially arranging the domain in a l × l

grid).

2. Suppose we want to share fi∗,j∗ where i∗, j∗ is the target point. First, we will sample l seeds s1, ..., sl and

using a PRG which goes from {0, 1}λ → {0, 1}l, we will get l bit-strings of length l. More simply, we will

obtain N random bits compressed into the l seeds of length λ which is much much smaller than l. �e �rst

share of fi∗,j∗ will be the seeds s1, ..., sl. However, note that this share does not depend on i∗, j∗ which is why

we will need a second share.

3. For the second share, everything is the same for seeds s2
i where i 6= i∗. For when i = i∗, we will have a random

seed s2
i∗

R←− {0, 1}λ. We will also publish w := PRG(si∗) ⊕ PRG(s2
i∗) ⊕ ej∗ and provide that to each share.

Note that each party cannot determine any information about i∗, j∗ from w with just their share since it is

binded by a PRG evaluation of a seed that is not known to them.

4. In addition, you will secret share l bits. b1...bl is given to the �rst server where bi
R←− {0, 1} and the second

server will be given the same bi when i 6= i∗ for b2i but then �ip the bit for b2i∗.

5. Evaluation: PRG(si)⊕ bi ∗ w for both parties.

When i 6= i∗, the �rst server will have PRG(si)⊕ bi ∗ w and the second server will also have PRG(si)⊕ bi ∗ w
(since si = s2

i and bi = b2i when i 6= i∗) which xors to 0. When i = i∗, the �rst server will have PRG(si∗)⊕ bi∗ ∗ w
and the second server will have PRG(s2

i∗)⊕ b2i∗ ∗w which when xor-ed will get PRG(si∗)⊕ PRG(s2
i∗)⊕w which is

equivalent to ej∗.

�e size of the share is (λ+ 2) ∗ l or (λ+ 2) ∗
√
N . If we were to try to go to key sizes beyond

√
N (i.e. log(n)),

you can naively do recursive composition since the shares themselves are point functions since they only di�er at

one point which will, but this will get you to poly-logarithmic key sizes. However, you can view each share as a tree

that di�ers only in the i∗ branch. Note that for every other branch, the state of the tree is the same for both shares.

On i∗’s branch, we can program the value to whatever we want using a value like w above.

Using this idea, you can make the root of the tree a di�erent PRG seed for each share which will then ex-

pand to the child-nodes as well as a factor b such that b ⊕ b′ = 1 where b′ is for the other share. �e correction

word w is chosen such that 0λ||s1 ⊕ s′1||1 ⊕ b0 ⊕ b′0||b1 ⊕ b′1 which is then blinded by G(s) ⊕ G(s′). �is results

in a correction word for each level of the tree is 2λ+2 and there are log(N) levels, resulting in a share size ofO(logN).

Open questions. Finally, to conclude, we will pose some open questions:

• Can we do a similar construction (i.e. concretely e�cient) for more than 2 parties? �e current

construction describe does not work for more than 2 parties since the other parties can collude to �gure out

what i∗ is as well as the requirement of more than 2 branches of the tree which can lead to di�erent values and

computations when generalized to log(N). �e best construction for k parties from one-way functions has a

share size of 2k ∗
√
N ∗ poly(λ) which is exponential.

83

• Can we do better with k parties if we require an honest majority compared to only one honest host?
In the constructions above, we only require one party to be honest. It is unknown if relaxing this condition to

being a honest majority will lead to a be�er k party construction.

• What is the most expressive functions that we can e�ectively secret share without having to use
multi-key FHE? �is construction was dealing with point functions (which can be expanded to interval

functions) but is it possible to e�ectively secret share even more complex functions? �is would allow us to

support more expressive queries in the private database query example mentioned above.

84

CS 395T: Topics in Cryptography May 2, 2022

Lecture 27: Private Information Retrieval

Lecturer: David Wu Scribe: Aya Abdelgawad

27.1 Premise
Private information retrieval (PIR) is the process by which clients can access records from a server without revealing

exactly which record they want. �e properties we want to achieve are

• Correctness: the client learns the desired database record di.

• Security: the (potentially malicious) server learns nothing about i.

Client(i) Server(d1, ..., dN)

−−−−−−−−−−−−−−−−−−−−−−−−−−B
.
.
.

C−−−−−−−−−−−−−−−−−−−−−−−−−−y y
di learns nothing

Remark 27.1. We do not require privacy for the server’s database; otherwise, this would be oblivious transfer (OT).

�us, there is a trivial PIR solution for the client to download the full database (O(N) response size). However, our

goal is to minimize the size of the server’s response to the client, so we want to build more e�cient constructions. If

we can do this, we can use PIR as the basic building block for privacy-preserving protocols, with potential applications

in

• private DNS lookups

• safe browsing

• private contact tracing

• contact discovery

• anonymous messaging

Remark 27.2. In order to maintain the security property, the server must do work linear in the size of the database

(if it does sublinear work, there are some records that will be ignored, revealing those were not di). A current open

question is if it is possible to do some linear preprocessing to encode the database so that the protocol takes sublinear

time per request.

27.2 Potential Constructions
Construction 27.3. Secret-Sharing in the Multi-Server Se�ing

In this se�ing, we assume that we have a two non-colluding servers, each with a copy of the database. �en we can

use homomorphic secret-sharing on a distributed point function to obtain f1, f2 ←DPF.Share(1λ, i). Since f1, f2

perfectly hide i, the client can send each server a share.

85

Server 1(d1, ..., dN) Client(i) Server 2(d1, ..., dN)

f1
C−−−−−−−−−− f1, f2 ← DPF.Share(1λ, i) f2−−−−−−−−−−B

y1 ←
∑
j∈[N] djf1(j) y2 ←

∑
j∈[N] djf2(j)

y1−−−−−−−−−−B y1 ⊕ y2
y2

C−−−−−−−−−−
↓
di

For this construction, the communication sizes are almost optimal with respect to N , with a

• query of size O(logN) · poly(λ)

• response of size 2|di|

While the server must do linear work with respect to the size of the database, it is possible to amortize with some

preprocessing.

Remark 27.4. It is possible to achieve information-theoretic constructions using locally decodable codes, but with

the cost that communication sizes blow up to O(N ε) with 0 < ε < 1.

Construction 27.5. FHE in Single-Server Se�ing

In this se�ing, we have only one server hosting the database. Let fd1,...,dn =
∑
j∈[N] dj · 1{i = j}. �en we can use

the following as a potential PIR construction:

Client(i) Server(d1, ..., dN)

(pk, sk)← FHE.Setup(1λ)

ct← FHE.Encrypt(pk, i) ct−−−−−−−−−−−−−−−−−−−−−−−−−−B
ct′

C−−−−−−−−−−−−−−−−−−−−−−−−−− ct′ ← FHE.Eval(fd1,...,dN , ct)
FHE.Decrypt(sk, ct′)

↓
di

�e communication sizes are

• query: O(logN) · poly(λ)

• response: |di| · poly(λ, logN) (note we can remove the logN factor by bootstrapping the FHE)

�is construction is unlikely to achieve concrete e�ciency, though, because it requires doingO(logN) multiplications

per database element. With N usually being around 220 − 230
, so the multiplicative depth is high, leading to poor

concrete e�ciency.

Construction 27.6. Kushilevitz-Ostrovsky in the Single-Server Se�ing

We can achieve be�er e�ciency results using the Kushilevitz-Ostrovsky framework, ge�ing communication down to

O(
√
N) by interpreting the database as a grid multiplying it by FHE encryption of ~ei (where i in this case represents

the column of the database we are interested in) to get an encryption of the relevant column.
d11 d12 · · · d1`

d21 d22 · · · d2`

.

.

.

.

.

.

.
.
.

.

.

.

d`1 d`2 · · · d``

× FHE.Encrypt(

0
1
.
.
.

0

)→ FHE.Encrypt(

d1i

d2i

.

.

.

d`i

)

In this construction, additively homomorphic constructions are su�cient for computing the output. Note that

both the query and response have size O(
√
N), but it is possible to decrease this by doing recursive computation

or homomorphic multiplication (both approaches requiring fully homomorphic schemes). �is is currently what

concretely-e�cient algorithms use today, but an open question is if we can further reduce the computational

complexity by encoding the database in some way. Note the server still has to do work linear in the database size, but

it is possible to amortize to O(
√
N) time with preprocessing.

86

27.3 Improving E�ciency of Lattice-Based Schemes with Rings

27.3.1 Ring-LWE
Recall that in the standard Regev encryption scheme, we have

pk = A =

[
A

sTA+ eT

]
∈ Zn×mq

a large public key, typically of size O(n2 log q)

(quadratic in the la�ice dimension)

sk = sT = [−sT |1] ∈ Znq

ct = Ar +

[
0n−1

µ ·
⌊
q
p

⌉] ∈ Znq
need n elements of Zq to encrypt 1 Zp element

(large blowup)

To improve e�ciency, we can work over polynomial rings instead. �e notation for this is

• Z[x]: ring of polynomials with integer coe�cients

• Z[x]/(x2d + 1): ring of polynomials with integer coe�cients, modulo x2d + 1 (a cyclotomic polynomial)

– Note that −1 ∼= x2d mod x2d + 1

We can think of LWE as working over the ring R = Z. Now, we consider the ring R = Z/(x2d + 1) for Ring-LWE

(RLWE). �e RLWE assumption is that given

a
R← Rq

s
R← Rq

e← χ

u
R← Rq

(whereχ is an analog of dicrete Gaussian inRq), then the following distributions are computationally indistinguishable:

(a, sa+ e) and (a, u).

We can use this assumption to build a Regev encryption scheme over rings.

sk = s where s
R← Rq

pk = (a, b) a
R← Rq

e← χ
b← sa+ e

ct = (ar, br + µ
⌊
q
2

⌉
) r

R← Rq and µ ∈ Rq
With this scheme we get shorter public keys, faster key-generation, and less blowup in ciphertext (can encrypt 1

Rp element with 2 Rq elements). Another bene�t comes from viewing view ring multiplication as matrix-vector

multiplication. For example, if we are working over the ring R = Z[x]/(x4 + 1) and have

a = 2x3 + x2 − 3x+ 1, s = x3 − 2x+ 2

then

as = (2x3 + x2 − 3x+ 1)(x3 − 2x+ 2) =

1 −3 1 2
−2 1 −3 1
−1 −2 1 −3
3 −1 −2 1

1
0
−2

2

 =

3
6
−9

9

x3

x2

x
1

Note that the right vector is uniform random, and so too is the �rst row of the le� matrix. However, the other rows are

related to that �rst one, so we are doing LWE on a structured matrix. �is gives us the bene�t that (with a suitable q)

we can compute as inO(d log d) time using Fast Fourier Transform (much faster than matrix multiplication in normal

LWE). However, this structured se�ing prevents us from reducing RLWE hardness to worst case la�ice problems.

87

27.3.2 General E�ciency Improvements from Rings
Most constructions based on standard la�ices can be directly translated into the ring se�ing with be�er concrete

e�ciency.

Exploiting Structure in the Ring Setting

Suppose we work over the ring R = Z[x]/(x2d + 1) and suppose we choose the plaintext modulus p = 1 mod 2d+1
.

We can show that the polynomial x2d + 1 factors mod p as

x2d + 1 =
∏
i∈[2d]

(x− αi) mod p

for a1, ..., a2d ∈ Zp. �en, by the Chinese Remainder �eorem (CRT):

R/pR = Zp[x]/(x2d + 1) ∼= Zp[x]/(x− α1)× ...× Zp[x]/(x− α2d)

∼= Z2d

p

�us, the plaintext space is isomorphic to Z2d

p . �is means that additions and multiplications in Rp correspond to

component-wise additions and multiplications in Z2d

p , respectively. Single instruction multiple data (SIMD) gives

us support for homomorphic evaluation, so if we encrypt a vector of 2d integers, we can apply each homomorphic

operation simultaneously on all 2d elements.

Reducing Ciphertext Size via Modulus Switching

When we use FHE to evaluate a circuit C , we need to choose parameters so that the accumulated error is smaller

than
q
2p . One useful technique is to perform all computations with respect a modulus q and then rescale the �nal

ciphertext to a smaller modulus q′ < q:

1. Recall that sT c =
⌊
q
p · µ

⌉
+ e mod q. We replace c 7→

⌊
q′

q · c
⌉

(and interpret c′ and element of Zq′).

2. To analyze this, we consider an expression over the rationals:

sT c =

⌊
p

q
· µ
⌉

+ e+ kq for some integer q

We can write

c′ =

⌊
q′

q
· c
⌉

=
q′

q
· c+ e′ where ||e′|| < 1/2 (over the rationals)

3. �en,

sT c′ =
q′

q
· sT c+ sT e′

=
q′

q

[(q
p
· µ+ e′′

)
+ e+ kq

]
+ sT e′

=
q′

p
µ+

q′

q
(e′′ + e) + kq′ + sT e′

∼=
q′

p
µ+

q′

q
(e′′ + e) + sT e′ mod q′

We require that the components of
q′

q (e′′+e)+sT e′ be smaller than
q′

2p . In particular, the secret key components

need to be small (i.e., sampled from an error distribution). In addition, observe that the error is scaled down by

q′

q .

Using this technique, we can rescale the ciphertexts to a smaller modulus q′, resulting in concrete reductions in the

size of communications.

88

CS 395T: Topics in Cryptography May 4, 2022

Lecture 28: Conclusion

Lecturer: David Wu Scribe: Soham Roy

28.1 Notes on RLWE
For the RLWE (ring LWE) problem, instead of operating overZ as in LWE, work over a polynomial ringZ [x] /

(
x2d + 1

)
.

�is can also be viewed as LWE with a structured matrix. (a, s · a+ e) ∼= (a, u), where a and s are polynomials.

Regev encryption over polynomial ring looks like pk = (a, b) where a
R←− Rq , s

R←− Rq , e
R←− χ, and b = sa+ e.

Ciphertext ct =
(
ar, b · r + µb q2e

)
, and r ←− χ. To encrypt a polynomial µ ∈ R2 (µ is degree 2d), |ct| = 2 |Rq|.

|µ|
|ct| = |R2|

2|Rq| = 1
2 log q . �is is a signi�cantly smaller ciphertext than LWE, both theoretically and practically.

Another reason to use polynomial rings is for the additional algebraic structure. Polynomial multiplication is

commutative, unlike with matrices. As far as we know, the commutative property does not compromise the RLWE

assumption. Unfortunately, RLWE doesn’t have worst-case reductions (only to a speci�c ring).

Suppose the plaintext space is R = Z [x] /
(
x2d+1

)
and the plaintext modulus p ≡ 1 (mod 2d+1). �e following

comes out of Galois theory:

x2d + 1 =
∏
i∈[2d]

(x− αi) where αi ∈ Zp

�is allows for the use of the Chinese Remainder �eorem. Using RNS (residual number system), operations can be

performed over a CRT decomposition of the ring modulus to be�er use registers that are smaller than necessary for

big integer representations.

Rp ∼= Zp [x] / (x− α1)× ...× Zp [x] / (x− α2d) ∼= Z2d

p

By choosing the plaintext modulus wisely, operations can be carried out over a vector space instead of a polynomial.

�is technique is called ”batching” in FHE or SIMD (single instruction multiple data) and can provide signi�cant time

savings. FHE can be done with polylog overhead.

28.2 Course summary
Advanced crypto→ securing (con�dentiality and integrity) computation

Homomorphic encryption - computing on encrypted data; Long believed to be impossible

Homomorphic signatures - computing on signed data

Zero knowledge for NP - integrity for computations

Functional encryption - �ne-grained access to encrypted data

�ese capabilities are powered by la�ice based cryptography. La�ice based cryptography comes from the study of

the SIS and LWE assumptions.

SIS: A ∈ Zn×mq , �nd ~x s.t. A~x = ~0 and ‖~x‖ ≤ β
LWE: A

R←− Zn×mq , s
R←− Znq , e

R←− χm, (A, sTA+ eT) ∼= (A, b) where b
R←− Znq

Hardness of LWE implies hardness of SIS and vice versa.

Both SIS and LWE have ring based analogues: RSIS and RLWE respectively.

Two major equations that underpin la�ice based cryptography.

89

Given A1, ..., Al ∈ Zn×mq and f : {0, 1}l → {0, 1}.

∃Hf where ‖Hf‖ = (n log q)
O(d)

s.t. [A1|...|Al] ·Hf = Af

∃Hf,x where ‖Hf,x‖ = (n log q)
O(d)

s.t. [A1 − x1G|...|Al − xlG] ·Hf,x = Af − f(x) ·G

Some of the uses of these two equations:

Hf Hf,x

FHE homomorphic evaluation correctness analysis

HS veri�cation homomorphic evaluation on signature

ABE key-generation decryption

90

Bibliography

[Ajt98] Miklós Ajtai. �e shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract).

In STOC, pages 10–19, 1998.

[ALNS20] Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-Davidowitz. Slide reduction, revisited

- �lling the gaps in SVP approximation. In CRYPTO, pages 274–295, 2020.

[ALS21] Divesh Aggarwal, Zeyong Li, and Noah Stephens-Davidowitz. A 2n/2-time algorithm for

√
n-svp and√

n-hermite svp, and an improved time-approximation tradeo� for (H)SVP. In EUROCRYPT, pages 467–497,

2021.

[AR04] Dorit Aharonov and Oded Regev. La�ice problems in NP cap conp. In FOCS, pages 362–371, 2004.

[Din00] Irit Dinur. Approximating SVP∞ to within almost-polynomial factors is np-hard. In CIAC, pages 263–276,

2000.

[GG00] Oded Goldreich and Sha� Goldwasser. On the limits of nonapproximability of la�ice problems. J. Comput.
Syst. Sci., 60(3):540–563, 2000.

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within almost

polynomial factors. In STOC, pages 469–477, 2007.

[Kho04] Subhash Khot. Hardness of approximating the shortest vector problem in la�ices. In FOCS, pages 126–135,

2004.

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational

coe�cients. Mathematische annalen, 261:515–534, 1982.

[Mic98] Daniele Micciancio. �e shortest vector in a la�ice is hard to approximate to within some constant. In

FOCS, pages 92–98, 1998.

[Pei08] Chris Peikert. Limits on the hardness of la�ice problems in lp norms. Comput. Complex., 17(2):300–351,

2008.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time la�ice basis reduction algorithms. �eor. Comput.
Sci., 53:201–224, 1987.

[WLW15] Wei Wei, Mingjie Liu, and Xiaoyun Wang. Finding shortest la�ice vectors in the presence of gaps. In

CT-RSA, pages 239–257, 2015.

91

	1 Introduction to Lattices
	Why Lattices?
	Lattice Definitions and Problems

	2 Short Integer Solutions
	Recap of lecture one
	Computational problems over lattices
	Hardness of GapSVP
	Open problems
	Algorithms for SVP

	Short Integer Solutions (SIS) problem
	SIS as a lattice problem

	3 Cryptographic Constructions from SIS
	Collision-Resistant Hash Functions from SIS
	Leftover Hash Lemma
	Commitments from SIS

	4 Lattice Trapdoors and Digital Signatures
	Commitments from SIS and the ISIS Problem
	Lattice Trapdoors
	Digital Signatures from Lattice Trapdoors in the Random Oracle Model

	5 Preimage-Sampleable Trapdoor Functions
	Constructing Preimage Sampleable Trapdoor functions from SIS
	Discrete Gaussian Distribution
	Gram-Schmidt Orthogonalization
	Approach for Preimage Sampling

	6 Discrete Gaussian Sampling
	Preimage Sampleable Trapdoor Functions
	Discrete Gaussian Sampling

	7 Discrete Gaussian Sampling
	Review of Gaussian sampling
	Rejection sampling
	GPV algorithm
	Using the GPV algorithm for signatures

	8 Learning With Errors
	Basics of LWE
	Properties of LWE
	Symmetric Encryption with LWE
	Public Key Encryption with LWE

	9 Fully Homomorphic Encryption
	Fully Homomorphic Encryption
	Somewhere Homomorphic Encryption from LWE
	Gentry-Sahai-Waters FHE

	10 FHE Bootstrapping
	GSW Encryption
	FHE with Polynomial Modulus

	11 Lattice-Based Key Exchange
	Homomorphically Evaluating Decryption
	Arithmetizing the PBP
	Noise Discussion

	Regev Encryption of Vectors
	Protocol
	Correctness
	Security
	Savings

	Key Exchange from LWE
	Protocol
	Correctness
	Security

	12 Homomorphic Signatures
	Definition
	Construction

	13 Homomorphic Signatures and Commitments
	Homomorphic Signature Schemes
	Unforgeability
	Context-Hiding
	Dual-Mode Homomorphic Commitment Schemes

	14 Homomorphic Commitments
	Recap: GSW Homomorphic Commitments
	Dual Mode Commitments
	An Application: Designated-Prover NIZKs for NP
	Construction Attempt 1
	Construction Attempt 2: Move commitment to the public parameter
	Solution: add a layer of indirection

	15 Attribute-Based Encryption
	Preliminaries
	Construction
	Dual-Regev Encryption
	ABE Construction (Informal)

	16 Attribute-Based Encryption
	ABE From Dual Regev Encryption

	17 Predicate Encryption
	Predicate Encryption from LWE

	18 Functional Encryption
	Definition
	Building block for FE: garbled circuits.
	Using Garbled Circuits for Two-Party Computation

	19 Succinct Functional Encryption
	Functional Encryption from Public-Key Encryption
	Succinct FE from Garbled Circuits, ABE, and FHE

	20 Designated-Verifier NIZKs
	Recap
	Interactive Zero-Knowledge Protocol for Graph Hamiltonicity
	One-Time Designated-Verifier NIZK for Graph Hamiltonicity

	21 Reusable Designated-Verifier NIZKs
	Reusable Designated-Verifier NIZKs
	Construction based on ABE
	Publicly-Verifiable NIZKs

	22 Correlation-Intractability and NIZKs
	Recap
	NIZKs from Circular-Secure FHE
	Correlation-Intractability for Search Relations

	23 NIZKs from LWE
	Wrapup of NIZKs from FHE
	CIHFs from SIS

	24 Multi-Key Fully Homomorphic Encryption
	Application: Two-Round Multiparty Computation
	Two-Party Computation from FHE
	Multi-Key Fully Homomorphic Encryption

	25 Homomorphic Secret Sharing
	Review of Multi-Key FHE
	Secret Sharing
	Homomorphic Secret Sharing

	26 Distributed Point Functions
	Recap: Homomorphic Secret Sharing
	Function Secret Sharing
	Distributed Point Functions

	27 Private Information Retrieval
	Premise
	Potential Constructions
	Improving Efficiency of Lattice-Based Schemes with Rings
	Ring-LWE
	General Efficiency Improvements from Rings

	28 Conclusion
	Notes on RLWE
	Course summary

