
CS 346: Introduction to Cryptography

Number Theory and Algebra Fact Sheet

Instructor: David Wu

Groups

• A group (G,★) consists of a group G together with an operation ★with the following properties:

– Closure: If 𝑔, ℎ ∈ G, then 𝑔 ★ℎ ∈ G.
– Associativity: For all 𝑔, ℎ, 𝑘 ∈ G, 𝑔 ★ (ℎ ★𝑘) = (𝑔 ★ℎ) ★𝑘 .

– Identity: There exists an (unique) element 𝑒 ∈ G such that for all 𝑔 ∈ G, 𝑒 ★𝑔 = 𝑔 = 𝑔 ★ 𝑒 .

– Inverse: For every element𝑔 ∈ G, there exists an (unique) elementℎ ∈ Gwhere𝑔★ℎ = 𝑒 = ℎ★𝑔.

• A group (G,★) is commutative (or abelian) if for all 𝑔, ℎ ∈ G, 𝑔 ★ℎ = ℎ ★𝑔.

• Notation: Unless otherwise noted, we will denote the group operation by ‘·’ (i.e., multiplicative

notation). If 𝑔, ℎ ∈ G, we write 𝑔ℎ to denote 𝑔 · ℎ. For a group element 𝑔 ∈ G, we write 𝑔−1 to denote

the inverse of 𝑔. We write 𝑔0 and 1 to denote the identity element. For a positive integer 𝑘 , we write

𝑔𝑘 to denote

𝑔𝑘 := 𝑔 · 𝑔 · · ·𝑔︸ ︷︷ ︸
𝑘 copies

.

For a negative integer 𝑘 , we write 𝑔−𝑘 to denote (𝑔𝑘)−1.

• A group G is cyclic if there exists a generator 𝑔 such that G =
{
𝑔0, . . . , 𝑔 |G |−1

}
.

• For an element 𝑔 ∈ G, we write ⟨𝑔⟩ :=
{
𝑔0, 𝑔1, . . . , 𝑔 |G | − 1

}
to denote the subgroup generated by 𝑔.

The order ord(𝑔) of 𝑔 in G is the size of the subgroup generated by 𝑔: ord(𝑔) := |⟨𝑔⟩|. The order of the

group G is the size of the group: ord(G) = |G|.

• Lagrange’s theorem: For a group G and any element 𝑔 ∈ G, the order of 𝑔 divides the order of the

group: ord(𝑔) | |G|.

• If G is a group of prime order, then G = ⟨𝑔⟩ for every 𝑔 ≠ 1 (i.e., every non-identity element of a

prime-order group is a generator).

The Groups Z𝑛 and Z∗𝑛
• We write Z𝑛 to denote the group of integers Z𝑛 := {0, 1, . . . 𝑛 − 1} under addition modulo 𝑛.

• We write Z∗𝑛 to denote the group of integers Z∗𝑛 := {𝑥 ∈ Z𝑛 : (∃𝑦 ∈ Z𝑛 : 𝑥𝑦 = 1 mod 𝑛)} under multi-

plication modulo 𝑛.

• Bezout’s identity: For all integers 𝑥,𝑦 ∈ Z, there exists integers 𝑠, 𝑡 ∈ Z such that 𝑥𝑠 +𝑦𝑡 = gcd(𝑥,𝑦).

– Given 𝑥,𝑦, computing 𝑠, 𝑡 can be computed in time 𝑂 (log |𝑥 | · log |𝑦 |) using the extended Eu-
clidean algorithm.

1

– An element 𝑥 ∈ Z𝑛 is invertible if and only if gcd(𝑥, 𝑛) = 1. This gives an equivalent charac-

terization of Z∗𝑛: Z
∗
𝑛 = {𝑥 ∈ Z𝑛 : gcd(𝑥, 𝑛) = 1}. Computing an inverse of 𝑥 ∈ Z∗𝑛 can be done

efficiently via the extended Euclidean algorithm.

– For prime 𝑝 , the group Z∗𝑝 = {1, 2, . . . , 𝑝 − 1}. The order of Z∗𝑝 is

��Z∗𝑝 �� = 𝑝 − 1. In particular Z∗𝑝
is not a group of prime order (whenever 𝑝 > 3). Computing the order of an element 𝑔 ∈ Z∗𝑝 is

efficient if the factorization of the group order (i.e., 𝑝 − 1)l is known.

• For a positive integer 𝑛, Euler’s phi function (also called Euler’s totient function) is defined to be

the number of integers 1 ≤ 𝑥 ≤ 𝑛 where gcd(𝑥, 𝑛) = 1. In particular, 𝜑 (𝑛) is the order of Z∗𝑛 . If
𝑝
𝑘1
1
𝑝
𝑘2
2
· · · 𝑝𝑘ℓ

ℓ
is the prime factorization of 𝑛, then

𝜑 (𝑛) = 𝑛 ·
∏
𝑖∈[ℓ]

(
1 − 1

𝑝𝑖

)
=

∏
𝑖∈[ℓ]

𝑝
𝑘𝑖−1
𝑖
(𝑝𝑖 − 1).

• Special cases of Lagrange’s theorem:

– Fermat’s theorem: For prime 𝑝 and 𝑥 ∈ Z∗𝑝 , 𝑥𝑝−1 = 1 (mod 𝑝).
– Euler’s theorem: For a positive integer 𝑛 and 𝑥 ∈ Z∗𝑛 , 𝑥𝜑 (𝑛) = 1 (mod 𝑛).

Operations over Groups

• Let 𝑛 be a positive integer. Take any 𝑥,𝑦 ∈ Z𝑛 . The following operations can be performed efficiently

(i.e., in time poly(log𝑛)):

– Sampling a random element 𝑟
r← Z𝑛 .

– Basic arithmetic operations: 𝑥 + 𝑦 (mod 𝑛), 𝑥 − 𝑦 (mod 𝑛), 𝑥𝑦 (mod 𝑛), 𝑥−1 (mod 𝑛). These

operations suffice to solve linear systems.

– Exponentiation: Computing 𝑥𝑘 (mod 𝑛) can be done in poly(log𝑛, log𝑘) time using repeated

squaring.

• Suppose 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are two large primes. Let 𝑥 ∈ Z𝑛 . Then, the following problems are

believed to be hard:

– Finding the prime factors of 𝑁 . This is equivalent to the problem of computing 𝜑 (𝑁).
– Computing an 𝑒 th root of 𝑥 where gcd(𝑁, 𝑒) = 1 (i.e., a value 𝑦 such that 𝑥𝑒 = 𝑦 mod 𝑁).

• Let G be a group of prime order 𝑝 with generator 𝑔. We often consider the following computational

problems over G:

– Discrete logarithm: Given (𝑔, ℎ) where ℎ = 𝑔𝑥 and 𝑥
r← Z𝑝 , compute 𝑥 .

– Computational Diffie-Hellman (CDH): Given (𝑔,𝑔𝑥 , 𝑔𝑦) where 𝑥,𝑦 r← Z𝑝 , compute 𝑔𝑥𝑦 .

– Decisional Diffie-Hellman (DDH): Distinguish between (𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑥𝑦) and (𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑟)
where 𝑥,𝑦, 𝑟

r← Z𝑝 .

2

