CS 346: Introduction to Cryptography

Number Theory and Algebra Fact Sheet

Instructor: David Wu

Groups

- A group (\mathbb{G}, \star) consists of a group \mathbb{G} together with an operation \star with the following properties:
- Closure: If $g, h \in \mathbb{G}$, then $g \star h \in \mathbb{G}$.
- Associativity: For all $g, h, k \in \mathbb{G}, g \star(h \star k)=(g \star h) \star k$.
- Identity: There exists an (unique) element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}, e \star g=g=g \star e$.
- Inverse: For every element $g \in \mathbb{G}$, there exists an (unique) element $h \in \mathbb{G}$ where $g \star h=e=h \star g$.
- A group (\mathbb{G}, \star) is commutative (or abelian) if for all $g, h \in \mathbb{G}, g \star h=h \star g$.
- Notation: Unless otherwise noted, we will denote the group operation by ' \because ' (i.e., multiplicative notation). If $g, h \in \mathbb{G}$, we write $g h$ to denote $g \cdot h$. For a group element $g \in \mathbb{G}$, we write g^{-1} to denote the inverse of g. We write g^{0} and 1 to denote the identity element. For a positive integer k, we write g^{k} to denote

$$
g^{k}:=\underbrace{g \cdot g \cdots g}_{k \text { copies }} .
$$

For a negative integer k, we write g^{-k} to denote $\left(g^{k}\right)^{-1}$.

- A group \mathbb{G} is cyclic if there exists a generator g such that $\mathbb{G}=\left\{g^{0}, \ldots, g^{|\mathbb{G}|-1}\right\}$.
- For an element $g \in \mathbb{G}$, we write $\langle g\rangle:=\left\{g^{0}, g^{1}, \ldots, g^{|\mathbb{G}|}-1\right\}$ to denote the subgroup generated by g. The order $\operatorname{ord}(g)$ of g in \mathbb{G} is the size of the subgroup generated by $g: \operatorname{ord}(g):=|\langle g\rangle|$. The order of the group \mathbb{G} is the size of the group: $\operatorname{ord}(\mathbb{G})=|\mathbb{G}|$.
- Lagrange's theorem: For a group \mathbb{G} and any element $g \in \mathbb{G}$, the order of g divides the order of the group: ord $(g)||\mathbb{G}|$.
- If \mathbb{G} is a group of prime order, then $\mathbb{G}=\langle g\rangle$ for every $g \neq 1$ (i.e., every non-identity element of a prime-order group is a generator).

The Groups \mathbb{Z}_{n} and \mathbb{Z}_{n}^{*}

- We write \mathbb{Z}_{n} to denote the group of integers $\mathbb{Z}_{n}:=\{0,1, \ldots n-1\}$ under addition modulo n.
- We write \mathbb{Z}_{n}^{*} to denote the group of integers $\mathbb{Z}_{n}^{*}:=\left\{x \in \mathbb{Z}_{n}:\left(\exists y \in \mathbb{Z}_{n}: x y=1 \bmod n\right)\right\}$ under multiplication modulo n.
- Bezout's identity: For all integers $x, y \in \mathbb{Z}$, there exists integers $s, t \in \mathbb{Z}$ such that $x s+y t=\operatorname{gcd}(x, y)$.
- Given x, y, computing s, t can be computed in time $O(\log |x| \cdot \log |y|)$ using the extended Euclidean algorithm.
- An element $x \in \mathbb{Z}_{n}$ is invertible if and only if $\operatorname{gcd}(x, n)=1$. This gives an equivalent characterization of $\mathbb{Z}_{n}^{*}: \mathbb{Z}_{n}^{*}=\left\{x \in \mathbb{Z}_{n}: \operatorname{gcd}(x, n)=1\right\}$. Computing an inverse of $x \in \mathbb{Z}_{n}^{*}$ can be done efficiently via the extended Euclidean algorithm.
- For prime p, the group $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$. The order of \mathbb{Z}_{p}^{*} is $\left|\mathbb{Z}_{p}^{*}\right|=p-1$. In particular \mathbb{Z}_{p}^{*} is not a group of prime order (whenever $p>3$). Computing the order of an element $g \in \mathbb{Z}_{p}^{*}$ is efficient if the factorization of the group order (i.e., $p-1$)l is known.
- For a positive integer n, Euler's phi function (also called Euler's totient function) is defined to be the number of integers $1 \leq x \leq n$ where $\operatorname{gcd}(x, n)=1$. In particular, $\varphi(n)$ is the order of \mathbb{Z}_{n}^{*}. If $p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{\ell}^{k_{\ell}}$ is the prime factorization of n, then

$$
\varphi(n)=n \cdot \prod_{i \in[\ell]}\left(1-\frac{1}{p_{i}}\right)=\prod_{i \in[\ell]} p_{i}^{k_{i}-1}\left(p_{i}-1\right) .
$$

- Special cases of Lagrange's theorem:
- Fermat's theorem: For prime p and $x \in \mathbb{Z}_{p}^{*}, x^{p-1}=1(\bmod p)$.
- Euler's theorem: For a positive integer n and $x \in \mathbb{Z}_{n}^{*}, x^{\varphi(n)}=1(\bmod n)$.

Operations over Groups

- Let n be a positive integer. Take any $x, y \in \mathbb{Z}_{n}$. The following operations can be performed efficiently (i.e., in time poly $(\log n)$):
- Sampling a random element $r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{n}$.
- Basic arithmetic operations: $x+y(\bmod n), x-y(\bmod n), x y(\bmod n), x^{-1}(\bmod n)$. These operations suffice to solve linear systems.
- Exponentiation: Computing $x^{k}(\bmod n)$ can be done in poly $(\log n, \log k)$ time using repeated squaring.
- Suppose $N=p q$ where p, q are two large primes. Let $x \in \mathbb{Z}_{n}$. Then, the following problems are believed to be hard:
- Finding the prime factors of N. This is equivalent to the problem of computing $\varphi(N)$.
- Computing an $e^{\text {th }}$ root of x where $\operatorname{gcd}(N, e)=1$ (i.e., a value y such that $x^{e}=y \bmod N$).
- Let \mathbb{G} be a group of prime order p with generator g. We often consider the following computational problems over \mathbb{G} :
- Discrete logarithm: Given (g, h) where $h=g^{x}$ and $x \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{p}$, compute x.
- Computational Diffie-Hellman (CDH): Given $\left(g, g^{x}, g^{y}\right)$ where $x, y \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{p}$, compute $g^{x y}$.
- Decisional Diffie-Hellman (DDH): Distinguish between $\left(g, g^{x}, g^{y}, g^{x y}\right)$ and $\left(g, g^{x}, g^{y}, g^{r}\right)$ where $x, y, r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{p}$.

