CS 346: Introduction to Cryptography
 Cryptographic Definitions

Instructor: David Wu
In this note, we will recall the main definitions of the cryptographic notions encountered in this course.

1 Cryptographic Building Blocks

Pseudorandom generators (PRGs). Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{n}$ be an efficiently-computable function where $n>\lambda$. We define the following PRG security experiments:

```
Experiment b=0:
1. The challenger samples s }\stackrel{R}{\leftarrow}{0,1\mp@subsup{}}{}{\lambda}\mathrm{ and sends t}\leftarrowG(s) to \mathcal{A}
2. The adversary }\mathcal{A}\mathrm{ outputs a bit }\mp@subsup{b}{}{\prime}\in{0,1}\mathrm{ .
```

Experiment $b=1$:

1. The challenger samples $t \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}$ and gives t to \mathcal{A}.
2. The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

We say G is a secure PRG if for all efficient adversaries \mathcal{A},

$$
\operatorname{PRGAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{negl}(\lambda) .
$$

Pseudorandom functions (PRFs). Let $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ be an efficiently-computable function with a key space \mathcal{K}, domain \mathcal{X}, and range \mathcal{Y} (technically, each of these sets is a function of the security parameter λ). We now define the following PRF security experiments:

```
Experiment b=0:
1. The challenger samples }k\stackrel{\textrm{R}}{\leftarrow}\mathcal{K}\mathrm{ .
2. The adversary can now adaptively make queries to the challenger.
    In each query, the adversary chooses an input }x\in\mathcal{X}\mathrm{ , and the
    challenger replies with F(k,x).
3. The adversary outputs a bit }\mp@subsup{b}{}{\prime}\in{0,1}\mathrm{ .
```

Experiment $b=1$:

1. The challenger samples a function $f \stackrel{\mathrm{R}}{\leftarrow} \operatorname{Funs}[\mathcal{X}, \mathcal{Y}]$.
2. The adversary can now adaptively make queries to the challenger. In each query, the adversary chooses an input $x \in \mathcal{X}$, and the challenger replies with $f(x)$.
3. The adversary outputs a bit $b^{\prime} \in\{0,1\}$.

We say that F is a secure PRF if for all efficient adversaries \mathcal{A},

$$
\operatorname{PRFAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{negl}(\lambda) .
$$

In the above definition, Funs $[\mathcal{X}, \mathcal{Y}]$ denotes the set of all functions $f: \mathcal{X} \rightarrow \mathcal{Y}$.

Pseudorandom permutations (PRPs). Let $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{X}$ be an efficiently-computable function with a key space \mathcal{K} and domain \mathcal{X} (technically, each of these sets is a function of the security parameter λ). We say that F is a pseudorandom permutation (PRP) if the following properties hold:

- For every key $k \in \mathcal{K}$, the function $F(k, \cdot)$ is a permutation on \mathcal{X}.
- There exists an efficiently-computable function $F^{-1}: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{X}$ such that for all $k \in \mathcal{K}$ and all $x \in \mathcal{X}$,

$$
F^{-1}(k, F(k, x))=x
$$

For security, we define the following PRP security experiments:

[^0][^1]We say that F is a secure PRP if for all efficient adversaries \mathcal{A},

$$
\operatorname{PRPAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{negl}(\lambda) .
$$

In the above definition, $\operatorname{Perm}[\mathcal{X}]$ denotes the set of all permutations $f: \mathcal{X} \rightarrow \mathcal{X}$.
Collision-resistant hash functions (CRHFs). Let $H:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ where $m<n$ (for full formality, the hash function would be indexed by a security parameter λ and n, m are polynomials in λ). We say that H is a collision-resistant hash function if for all efficient (uniform) adversaries \mathcal{A} (that takes the security parameter λ as input),

$$
\operatorname{CRHFAdv}[\mathcal{A}]=\operatorname{Pr}[(x, y) \leftarrow \mathcal{A}: H(x)=H(y) \text { and } x \neq y]=\operatorname{negl}(\lambda)
$$

2 Symmetric Encryption

A symmetric encryption scheme (also called a cipher) is defined over a key space \mathcal{K}, a message space \mathcal{M}, and a ciphertext space C (technically, each of these sets is a function of the security parameter λ) and consists of two efficient algorithms:

- Encrypt $(k, m) \rightarrow c t:$ On input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, the encryption algorithm outputs a ciphertext ct.
- $\operatorname{Decrypt}(k, \mathrm{ct}) \rightarrow m / \perp$: On input a key $k \in \mathcal{K}$ and a ciphertext ct $\in \mathcal{C}$, the decryption algorithm either outputs a message $m \in \mathcal{M}$ or a special symbol \perp (to indicate a decryption failure).

Correctness. The encryption scheme is correct if for all keys $k \in \mathcal{K}$ and all messages $m \in \mathcal{M}$,

$$
\operatorname{Pr}[\operatorname{Decrypt}(k, \operatorname{Encrypt}(k, m))=m]=1 .
$$

Perfect secrecy. The encryption scheme satisfies perfect secrecy if for all pairs of messages $m_{0}, m_{1} \in \mathcal{M}$ and all ciphertext ct $\in C$,

$$
\operatorname{Pr}\left[k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}: \operatorname{Encrypt}\left(k, m_{0}\right)=c\right]=\operatorname{Pr}\left[k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}: \operatorname{Encrypt}\left(k, m_{1}\right)=c\right] .
$$

Semantic security. We start by defining the semantic security experiment:

Experiment $b=0$:
1. The challenger samples a key $k \gtrless^{\mathrm{R}} \mathcal{K}$.
2. The adversary \mathcal{A} sends messages $m_{0}, m_{1} \in \mathcal{M}$ to the challenger.
3. The challenger replies with Encrypt $\left(k, m_{0}\right)$.
4. The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

Experiment $b=1$:

1. The challenger samples a key $k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$.
2. The adversary \mathcal{A} sends messages $m_{0}, m_{1} \in \mathcal{M}$ to the challenger.
3. The challenger replies with $\operatorname{Encrypt}\left(k, m_{1}\right)$.
4. The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

We say the encryption scheme satisfies semantic security if for all efficient adversaries \mathcal{A},

$$
\operatorname{SSAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{negl}(\lambda) .
$$

Note that when the message space \mathcal{M} contains variable-length messages, then each of the adversary's encryption queries $\left(m_{0}, m_{1}\right)$ in the semantic security experiment must additionally satisfy $\left|m_{0}\right|=\left|m_{1}\right|$.

Security against chosen-plaintext attacks (CPA-security). We start by defining the CPA-security experiment:

```
Experiment b=0:
- The challenger samples a key }k\stackrel{\textrm{R}}{\leftarrow}\mathcal{K}\mathrm{ .
- The adversary can now make queries to the challenger:
    - Encryption query: The adversary sends mo, m
        challenger. The challenger replies with Encrypt (k, mo).
- The adversary }\mathcal{A}\mathrm{ outputs a bit }\mp@subsup{b}{}{\prime}\in{0,1}\mathrm{ .
```


Experiment $b=1$:

- The challenger samples a key $k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
- Encryption query: The adversary sends $m_{0}, m_{1} \in \mathcal{M}$ to the challenger. The challenger replies with $\operatorname{Encrypt}\left(k, m_{1}\right)$.
- The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

We say the encryption scheme satisfies security against chosen-plaintext attacks (CPA-security) if for all efficient adversaries \mathcal{A},

$$
\operatorname{CPAAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{negl}(\lambda) .
$$

Note that when the message space \mathcal{M} contains variable-length messages, then each of the adversary's encryption queries $\left(m_{0}, m_{1}\right)$ in the CPA-security experiment must additionally satisfy $\left|m_{0}\right|=\left|m_{1}\right|$.

Security against chosen-ciphertext attacks (CCA-security). We start by defining the CCA-security experiment:
Experiment $b=0$:

- The challenger samples a key $k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
- Encryption query: The adversary sends $m_{0}, m_{1} \in \mathcal{M}$ to the
challenger. The challenger replies with $\operatorname{Encrypt}\left(k, m_{0}\right)$.
- Decryption query: The adversary sends a ciphertext $\mathrm{ct} \in C$ to
the challenger. The challenger replies with $\operatorname{Decrypt}(k, \mathrm{ct})$.
- The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

Experiment $b=1$:

- The challenger samples a key $k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
- Encryption query: The adversary sends $m_{0}, m_{1} \in \mathcal{M}$ to the challenger. The challenger replies with $\operatorname{Encrypt}\left(k, m_{1}\right)$.
- Decryption query: The adversary sends a ciphertext ct $\in C$ to the challenger. The challenger replies with $\operatorname{Decrypt}(k, c t)$.
- The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

We say an adversary \mathcal{A} is admissible for the CCA-security game if it does not issue a decryption query on a ciphertext ct it previously received from the challenger (in response to an encryption query). We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient and admissible adversaries \mathcal{A},

$$
\operatorname{CCAAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{negl}(\lambda)
$$

Note that when the message space \mathcal{M} contains variable-length messages, then each of the adversary's encryption queries (m_{0}, m_{1}) in the CCA-security experiment must additionally satisfy $\left|m_{0}\right|=\left|m_{1}\right|$.

Ciphertext integrity. We start by defining the ciphertext integrity experiment:

Ciphertext integrity experiment:

- The challenger samples a key $k \stackrel{R}{\leftarrow} \mathcal{K}$.
- The adversary can now make encryption queries to the challenger:
- Encryption query: The adversary sends $m \in \mathcal{M}$ to the challenger. The challenger replies with ct $\leftarrow \operatorname{Encrypt}(k, m)$.
- The adversary \mathcal{A} outputs a ciphertext ct* $\in C$.

Let $\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{Q} \in C$ be the ciphertexts that the challenger gives the adversary in the security game (when responding to encryption queries). We say an adversary \mathcal{A} is admissible for the existential unforgeability game if $\mathrm{ct}^{*} \notin\left\{\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{Q}\right\}$. We say that the encryption scheme satisfies ciphertext integrity if for all efficient and admissible adversaries \mathcal{A},

$$
\operatorname{Pr}\left[\operatorname{Decrypt}\left(k, \operatorname{ct}^{*}\right) \neq \perp\right]=\operatorname{negl}(\lambda) .
$$

Authenticated encryption. We say the encryption scheme is an authenticated encryption if it satisfies CPAsecurity and ciphertext integrity.

3 Message Authentication Codes

A message authentication code (MAC) is defined over a key space \mathcal{K}, a message space \mathcal{M}, and a tag space \mathcal{T} (technically, each of these sets is a function of the security parameter λ) and consists of two efficient algorithms:

- $\operatorname{Sign}(k, m) \rightarrow t$: On input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, the signing algorithm outputs a tag t.
- Verify $(k, m, t) \rightarrow 0 / 1$: On input a key $k \in \mathcal{K}$, a message $m \in \mathcal{M}$, and a $\operatorname{tag} t \in \mathcal{T}$, the verification algorithm outputs a bit $b \in\{0,1\}$ (indicating whether the tag is valid or not).

Correctness. The MAC is correct if for all keys $k \in \mathcal{K}$ and all messages $m \in \mathcal{M}$,

$$
\operatorname{Pr}[\operatorname{Verify}(k, m, \operatorname{Sign}(k, m))=1]=1 .
$$

Existential unforgeability. We start by defining the existential unforgeability experiment:

Existential unforgeability experiment:

- The challenger samples a key $k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make signing queries to the challenger:
- Signing query: The adversary sends $m \in \mathcal{M}$ to the challenger. The challenger replies with $t \leftarrow \operatorname{Sign}(k, m)$.
- The adversary \mathcal{A} outputs a message $m^{*} \in \mathcal{M}$ and tag $t^{*} \in \mathcal{T}$.

Let $m_{1}, \ldots, m_{Q} \in \mathcal{M}$ be the signing queries the adversary makes and let $t_{1}, \ldots, t_{Q} \in \mathcal{T}$ be the respective tags that the challenger responds with. We say an adversary \mathcal{A} is admissible for the existential unforgeability game if $\left(m^{*}, t^{*}\right) \notin\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{Q}, t_{Q}\right)\right\}$. We say the MAC satisfies existential unforgeability against chosen-message attacks if for all efficient and admissible adversaries \mathcal{A},

$$
\operatorname{Pr}\left[\operatorname{Verify}\left(k, m^{*}, t^{*}\right)=1\right]=\operatorname{negl}(\lambda)
$$

4 Block Cipher Modes of Operation

We now recall two common ways to use block ciphers to construct CPA-secure encryption schemes.

Counter mode. Let $F: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a secure PRF. In the following, k is the PRF key and $m=\left(m_{1}, \ldots, m_{n}\right)$ are the blocks of the message (i.e., $m_{i} \in\{0,1\}^{n}$). In randomized counter-mode encryption, sample IV ${ }_{\leftarrow}^{R}\{0,1\}^{n}$, and the ciphertext is (IV, c_{1}, \ldots, c_{n}). We view IV as an integer between 0 and $2^{n}-1$, and perform arithmetic operations modulo 2^{n}.

Figure 1: Counter-mode encryption

Figure 2: Counter-mode decryption

Cipherblock chaining (CBC). Let $F: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher (i.e., a secure PRP). In the following, k is the PRP key and $m=\left(m_{1}, \ldots, m_{n}\right)$ are the blocks of the message (i.e., $\left.m_{i} \in\{0,1\}^{n}\right)$. In CBC encryption, sample IV $\stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}$, and the ciphertext is (IV, c_{1}, \ldots, c_{n}).

Figure 3: CBC encryption

Figure 4: CBC decryption

5 Public-Key Encryption

A public-key encryption scheme is define with respect to a message space \mathcal{M} and a ciphertext space C (technically, each of these sets can be a function of the security parameter λ) and consists of three algorithms:

- Setup \rightarrow (pk, sk): The setup algorithm outputs a public key pk and a secret key sk. (Technically, this algorithm takes the security parameter λ as input).
- Encrypt $(\mathrm{pk}, m) \rightarrow \mathrm{ct}$: On input the public key pk and a message $m \in \mathcal{M}$, the encryption algorithm outputs a ciphertext ct.
- Decrypt (sk, ct) $\rightarrow m$: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a message $m \in \mathcal{M}$ or a special symbol \perp (to indicate a decryption failure).

Correctness. A public-key encryption scheme is correct if for all (pk, sk) output by Setup and all messages $m \in \mathcal{M}$,

$$
\operatorname{Pr}[\operatorname{Decrypt}(\text { sk, } \operatorname{Encrypt}(p k, m))=m]=1 .
$$

Semantic security. The semantic security experiment is defined analogously to the corresponding notion in the secret-key setting:
Experiment $b=0$:

1. The challenger samples $(\mathrm{pk}, \mathrm{sk}) \leftarrow$ Setup and gives pk to \mathcal{A}.
2. The adversary \mathcal{A} sends messages $m_{0}, m_{1} \in \mathcal{M}$ to the challenger.
3. The challenger replies with Encrypt $\left(\mathrm{pk}, m_{0}\right)$.
4. The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.
Experiment $b=0$:
5. The challenger samples $(\mathrm{pk}, \mathrm{sk}) \leftarrow$ Setup and gives pk to \mathcal{A}.

Experiment $b=1$:

1. The challenger samples $(\mathrm{pk}, \mathrm{sk}) \leftarrow$ Setup and gives pk to \mathcal{A}.
2. The adversary \mathcal{A} sends messages $m_{0}, m_{1} \in \mathcal{M}$ to the challenger.
3. The challenger replies with Encrypt (pk, m_{1}).
4. The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

We say the encryption scheme satisfies semantic security if for all efficient adversaries \mathcal{A},

$$
\operatorname{SSAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{neg}(\lambda)
$$

CCA security. We start by defining the CCA-security experiment for public-key encryption. This is the analog of the corresponding secret-key notion.
Experiment $b=0$:

- The challenger samples (pk, sk) \leftarrow Setup and gives pk to \mathcal{A}.
- The adversary can now issue decryption queries to the challenger:
 - Decryption query: The adversary sends a ciphertext ct $\in C$ to
the challenger. The challenger replies with Decrypt(sk, ct).
- The adversary \mathcal{A} sends messages $m_{0}, m_{1} \in \mathcal{M}$ to the challenger.
- The challenger replies with ct* $\leftarrow \operatorname{Encrypt}\left(\mathrm{pk}, m_{0}\right)$.
- The adversary can make more decryption queries to the challenger,
with the restriction that it is not allowed to query on ct*.
 - Decryption query: The adversary sends a ciphertext ct \neq ct* * to
the challenger. The challenger replies with $\operatorname{Decrypt}(\mathrm{sk}, \mathrm{ct})$.
- The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

Experiment $b=1$:

- The challenger samples $(\mathrm{pk}, \mathrm{sk}) \leftarrow$ Setup and gives pk to \mathcal{A}.
- The adversary can now issue decryption queries to the challenger:
- Decryption query: The adversary sends a ciphertext ct $\in C$ to the challenger. The challenger replies with Decrypt(sk, ct).
- The adversary \mathcal{A} sends messages $m_{0}, m_{1} \in \mathcal{M}$ to the challenger.
- The challenger replies with $\mathrm{ct}^{*} \leftarrow \operatorname{Encrypt}\left(\mathrm{pk}, m_{1}\right)$.
- The adversary can make more decryption queries to the challenger, with the restriction that it is not allowed to query on ct^{*}.
- Decryption query: The adversary sends a ciphertext ct $\neq \mathrm{ct}$ * to the challenger. The challenger replies with $\operatorname{Decrypt}(\mathrm{sk}, \mathrm{ct})$.
- The adversary \mathcal{A} outputs a bit $b^{\prime} \in\{0,1\}$.

We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient adversaries \mathcal{A},

$$
\operatorname{CCAAdv}[\mathcal{A}]=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{neg}(\lambda)
$$

6 Digital Signatures

A digital signature scheme is defined over a message space \mathcal{M} and a signature space \mathcal{S} (technically, each of these sets can be a function of the security parameter λ) and consists of three main algorithms:

- Setup \rightarrow (vk, sk): The setup algorithm outputs a public verification key vk and a secret signing key sk. (Technically, this algorithm takes the security parameter λ as input).
- Sign $(\mathrm{sk}, m) \rightarrow \sigma$: On input the signing key sk and a message $m \in \mathcal{M}$, the signing algorithm outputs a signature $\sigma \in \mathcal{S}$.
- Verify $(\mathrm{vk}, m, \mathrm{ct}) \rightarrow\{0,1\}$: On input the verification key vk , a message $m \in \mathcal{M}$, and a signature $\sigma \in \mathcal{S}$, the verification algorithm outputs a bit $b \in\{0,1\}$ (indicating whether the signature is valid or not).

Correctness. The signature scheme is correct if for all (vk, sk) output by Setup and all messages $m \in \mathcal{M}$,

$$
\operatorname{Pr}[\operatorname{Verify}(\mathrm{vk}, m, \operatorname{Sign}(\mathrm{sk}, m))=1]=1
$$

Unforgeability. We start by defining the unforgeability experiment:

```
Existential unforgeability experiment:
- The challenger samples (vk, sk) \leftarrow Setup and gives vk to the adversary.
- The adversary can now make signing queries to the challenger:
    - Signing query: The adversary sends m}\in\mathcal{M}\mathrm{ to the challenger. The challenger replies with }\sigma\leftarrow\operatorname{Sign(sk,m).
- The adversary }\mathcal{A}\mathrm{ outputs a message }\mp@subsup{m}{}{*}\in\mathcal{M}\mathrm{ and signature }\mp@subsup{\sigma}{}{*}\in\mathcal{S}\mathrm{ .
```

We say an adversary \mathcal{A} is admissible for the signature unforgeability game if the adversary does not make a signing query on the message m^{*}. We say the signature scheme satisfies unforgeability if for all efficient and admissible adversaries \mathcal{A},

$$
\operatorname{Pr}\left[\operatorname{Verify}\left(\mathrm{sk}, m^{*}, \sigma^{*}\right)=1\right]=\operatorname{negl}(\lambda) .
$$

[^0]: Experiment $b=0$:

 1. The challenger samples $k \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$.
 2. The adversary can now adaptively make queries to the challenger. In each query, the adversary chooses an input $x \in \mathcal{X}$, and the challenger replies with $F(k, x)$.
 3. The adversary outputs a bit $b^{\prime} \in\{0,1\}$.
[^1]: Experiment $b=1$:

 1. The challenger samples a function $f \stackrel{\mathrm{R}}{\leftarrow} \operatorname{Perm}[X]$.
 2. The adversary can now adaptively make queries to the challenger. In each query, the adversary chooses an input $x \in \mathcal{X}$, and the challenger replies with $f(x)$.
 3. The adversary outputs a bit $b^{\prime} \in\{0,1\}$.
