
CS 346: Cryptography Spring 2023

Homework 5: Public-Key Cryptography

Due: April 17, 2023 at 11:59pm (Submit on Gradescope) – No late days! Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/sp23/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Collision-Resistant Hashing from RSA [14 points]. Let N = pq be an RSA modulus and take

e ∈N to be a prime that is also relatively prime to ϕ(N ). Let u
R←−Z∗

N , and define the hash function

HN ,e,u : Z∗
N × {0, . . . ,e −1} →Z∗

N where HN ,e,u(x, y) = xe uy ∈Z∗
N .

In this problem, we will show that under the RSA assumption, HN ,e,u defined above is collision-resistant.
Namely, suppose there is an efficient adversary A that takes as input (N ,e,u) and outputs (x1, y1) ̸= (x2, y2)
such that HN ,e,u(x1, y1) = HN ,e,u(x2, y2). We will use A to construct an efficient adversary B that takes as

input (N ,e,u) where u
R←−Z∗

N and outputs x such that xe = u ∈Z∗
N .

(a) Show that using algorithm A defined above, algorithm B can efficiently compute a ∈ZN and b ∈Z
such that ae = ub (mod N ) and 0 ̸= |b| < e. Remember to argue why any inverses you compute will
exist.

(b) Use the above relation to show how B can efficiently compute x ∈ZN such that xe = u. Note that B
does not know the factorization of N , so B cannot compute b−1 (mod ϕ(N )). Hint: What is gcd(b,e)?

Problem 2: Baby Bleichenbacher [24 points]. In this problem, we will explore a simplified variant of
Bleichenbacher’s CCA attack against PKCS#1 encryption. Let (N ,e) be the public-key for an RSA-based
encryption scheme, where N = pq is a product of two primes and e is invertible modulo ϕ(N ) (i.e., there
exists d such that ed = 1 mod ϕ(N )). For x ∈ ZN , define the function fx : ZN → {0,1} where fx (r ) = 1 if
the value of x · r (mod N ) is greater than N /2 (where we view x · r (mod N ) as an integer between 0 and
N −1), and 0 otherwise.

(a) Construct an algorithm that given O(log N ) queries to fx recovers the value of x ∈ZN . Your algorithm
can make arbitrary queries to fx . Prove the correctness of your algorithm.

(b) Suppose an adversary has intercepted an RSA ciphertext c ∈ ZN where c = xe (mod N ) for some
x ∈ ZN . Moreover, suppose the adversary has access to a “partial” decryption oracle that takes as
input an input z ∈ZN and outputs 1 if zd (mod N ) is greater than N /2 (where we view zd (mod N )
as an integer between 0 and N −1), and d = e−1 (mod ϕ(N )) is the RSA decryption constant. Use
your result from Part (a) to show how the adversary can decrypt c to obtain the message x by making
O(log N ) queries to this partial decryption oracle.

https://www.cs.utexas.edu/~dwu4/courses/sp23/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/fa22/info.html


Problem 3: Bleichenbacher Attack on PKCS#1 [30 points]. Recall that a RSA-PKCS#1 encryption of
a message m ∈ {0,1}n under an RSA public key (N ,e) is formed by first constructing a padded message
x ←PKCS(m) ∈ZN and then computing c ← xe ∈ZN . This scheme was used in the SSL 3.0 handshake.

In the SSL 3.0 handshake, the client chooses a random “pre-master secret” k (used to derive the
session keys) and encrypts k using RSA-PKCS#1 under the server’s public key to obtain a ciphertext c.
Upon receiving the encrypted key c, the server attempts to decrypt the message; if the decryption yields
a message that is not a well-formed PKCS#1 message, the server sends an abort message to the client.
Otherwise, it continues with the handshake. In this problem, we will say that a message has a proper
PKCS#1 padding if it starts with the two-byte sequence 00∥04.1 Bleichenbacher showed that this single bit
of leakage (via a “padding oracle”) can be leveraged to mount a full key-recovery attack against SSL 3.0. In
this problem, you will implement this attack.

We have provided starter code that contains a basic implementation of RSA-PKCS#1 encryption (see
main.py) with our modified PKCS#1 header. Your objective is to implement Bleichenbacher’s attack
(described below). In particular, your algorithm should be able to decrypt an intercepted RSA-PKCS#1
ciphertext given knowledge of only the public key (N ,e) and access to the following padding oracle:

on input a ciphertext c ∈ZN , the padding oracle outputs 1 if cd ∈ZN is a valid (modified) PKCS#1
message (starts with the two-byte sequence 00∥04) and 0 otherwise

We include a description of Bleichenbacher’s attack (for our modified PKCS#1 header) below. You may
also refer to the original attack description (for standard PKCS#1 headers) in Section 3.1 of this paper. See
Section 3.2 for the analysis of the algorithm (this is not required for implementing the algorithm, but can
be beneficial for understanding why the algorithm works).

In the following, we say a ciphertext c ∈ZN is “PKCS-conforming” if it decrypts to a message that has a valid
PKCS#1 padding (as defined according to the above oracle). Then, on input a PKCS-conforming ciphertext
c ∈ZN , Bleichenbacher’s attack proceeds as follows:

1. Let k be the length of N in bytes and let B = 28(k−2). Initialize M1 ← {[4B ,5B −1]} and i ← 1.

2. Let s1 ≥ N /(5B) be the smallest integer such that the ciphertext c(s1)e mod N is PKCS-conforming.

3. Depending on the number of intervals the set Mi contains, proceed as follows:

• If Mi−1 contains exactly one interval [a,b], then choose small integer values ri , si such that

ri ≥ 2
bsi−1 −4B

N

and
4B + ri N

b
≤ si < 5B + ri N

a

until the ciphertext c(si )e mod N is PKCS-conforming.

• If Mi−1 contains two or more intervals, then search for the smallest integer si > si−1 such that the
ciphertext c(si )e mod N is PKCS-conforming.

1In the actual PKCS#1 padding scheme, the header is the sequence 00∥02; we use a modified header in this assignment. In
practice, PKCS#1 will also check that the header is followed by sufficiently-many non-zero padding bytes, but for simplicity in
this problem, we will ignore this detail and only require checking the first two bytes.

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf


After computing si , the set Mi is updated as follows:

Mi ←
⋃

(a,b,r )

{[
max

(
a,

⌈
4B + r N

si

⌉)
,min

(
b,

⌊
5B −1+ r N

si

⌋)]}

for all [a,b] ∈ Mi−1 and asi−5B+1
N ≤ r ≤ bsi−4B

N . If Mi contains a single interval of length 1 (i.e., Mi = {[a, a]},
then output a as the solution. Otherwise, set i ← i +1 and repeat.

The invariant in the above algorithm is that the message associated with c is always contained in one of the
intervals in the set Mi .

In our starter code, we use a 128-bit RSA modulus (which is easily factored), but your implementation
should also support a 1024-bit RSA modulus with several minutes of computation (factoring a general
1024-bit modulus is well beyond the reach of current techniques). Your task is to implement the decrypt
method in bleichenbacher.py. You cannot change the interface for __init__ or decrypt; otherwise,
you are free to implement the algorithm however you prefer (using standard Python libraries). Your code
will be evaluated only for correctness (so if you prefer a different approach to breaking RSA-PKCS#1, such
as factoring the modulus, that is also acceptable2). Some helper functions are provided in util.py.

Debugging hints:

• The most time-consuming part of the algorithm is usually finding the initial s1. For a 1024-bit
modulus, this can take a few minutes.

• The set Mi usually contains a single interval. The case where Mi has multiple intervals is uncom-
mon.

• In the main loop, the size of the interval typically decreases by a factor of ≈ 2 in each iteration.

Submission instructions: Upload your code (consisting of only bleichenbacher.py) to Gradescope
under Homework 5A. Note that your implementation must work with our provided main.py and util.py.
Your submission will be autograded, and upon submission, your code will be run on a simple test case.
There is no written component for this question.

Problem 4: Time Spent [2 points]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course overall?

2Indeed, if you break the 1024-bit scheme via a factoring algorithm, you will automatically receive an “A” in this course (and
probably throw in a Ph.D. too).


