
Sufficient now to construct a torsionfunction.

Typical approach is to use a block cipher.

↑Meyer: Let F:RxX-X be a block cipher. The Davies-Meyer compression function h=kxX-X is them

sEFcpticX h(k,x): =F(k,X)*X
- Many other variants also possible: h(k,x) =F(k,x) *k*X

Iused in Whirlpool hash family]
Need to be careful with design.

->

h(k,x) =F(k,x) is no collision-resistant: h(k, x): h(k', F"(k', F(k,x()
- h(k,x) =F(k,x) #1 is not collision-resistant: h(k, x) = h(k, F"(k, F(k,x)#k# ()

#orem. If we model F as an ideal block cipher (i.e., a truly random permutation for every choice of key), then Davies-Meyer is

collision- resistant.
birthday attack run-time: 2280

↑ attack ran in time 2264 (100,000faster)
&

lusion: Block cipher + Davies-Meyer + Merkle-Damgard-CRHFs January,2020:Chosen-Pretorone!
#

mples: SHA-1: SHACAL-1 block cipher with Davies-Meyer-Merkle
- Damgard - no longer secure (first collision found in 2017:]

SHA-256: SHACAL-2 block cipher with Davies - Meyer
- Merkle-Damgard -

SHA-1 extensively used (e.g., git, sun,
software updates, P6P/6PC signatures,

Why not use AES? certificates) -> attacks show need

-

Block size too small! AES outputs are 128-bits, not 256 bits (so birthday attack finds collision in 264 time) to transition to
SHA-2 or SHA-S

- Short keys means small number of message bits processed per iteration.
-

Typically, block cipher designed to be fast when using same key to encrypt many messages
↳ In Merkle-Damgard, offerent keys are used, so alternate design preferred (AES key schedule is pensive)

#ently: SHA-3 family of hash functions standardized (2013)
->Relies on different underlying structure ("sponge" function)
->
Both SHA-2 and SHA-3 are believed to be secure (most systems use SHA-2-typically much faster)

~or
even better, a large-domain PRF

Back to building a secure MAC from a CRHF - can we do it more factly than using CRHF+ small-domain MAC?

->Main difficulty
#a: include theseems to bethat CRHFsare helless

but MACs are noin

Bitself, collision-resistance does not provide any "randomness" guarantees on the output
->For instance, if H is collision-resistant, then H'(m) =Moll.../mol/H(m) is also collision-resistant even though H also

taks the first 18 bits/blocks of m

-> Constructing a PRF/MAC from a huch function will require more than just collision resistance

#

or1: Model hash function as an "ideal hash function" that behaves like a fixed random function

(modeling mistic called the random oracle model-will encounter later in this course
#

o2: Start with a concrete construction of a CRHF (e.g., Merkle-Daigard or the sponge construction)
and reason about its properties

↳ We will take this approach

Suppose It is a Merkle-Damgard hash function built from a care compression function

several
ways to build a keyed function:

1. Prepend key: F(k, m): = H(kllm)
->Insecure due to structure of Merkle-Damgard: can mount an "extension attack" given H(kllm), can compute

#(kllm/ m') by extending Merkle-Dangard chain

2. Append key: F(k,m): =H(m/(k)
->Similar to hash-then-MAC construction and vulnerable to same offline attack: adversary finds a collision in the

Merkle-Damgard prefix and uses that to construct a forgery ↑>for SHA-1, they used PDF files
↳>structure exploited in SHA-1 collision demonstration (can generate aitrary collisions once prefix matches)

3.Envelope method:F(k,m) = = H(k/Im((() 3 for reasonable pseudorandomness assumptions on h (e.g., both
4.Two-key nest: F((k1, (x2), m)

= = H(k2(/H(k,((m)) F(k,m): = h(k,m) and Fz(k,m): =h(m,K) is a PRF), both

of these constructions are secure PRFs on a variable- size domain
hash-based MAC

N
HMAC is a PRF/MAC based on the two-key rest (though with correlated keys):

HMAC(k, m) =
=H(k, IH(k2, m))

where K.-k&ipad and K2*kopad
and ipad and open are fixed strings (specified in the HMAC standard)

y a
0x36 repeated Ox3C repeated

-curity: Since K, and Ke are correlated, need to make stronger assumption on security (e.g., h remains pseudorandom under a rematedalack
#

antiations: Typically, denoted HMAC-H where H is the hash function

e.g. HMAC-SHA1

HMAC-SHA256 - One of the most widely-used MAC on the web (used in SSL/TLS, IPsec, SSH, and more)

*
for key-derivation: Recall that under reasonable assumptions, HMAC is a secure PRF

=>many protocols, we need to derive multiple keys from a single master key (e.g., derived from a password)
->To derive multiple independent cryptographic keys, a PRF is a natural primitive:

kenc - HMAC (kmaster, "enc") & PRF security says derived keys are computationally indistinguishable from
↓mac- HMAC (kmaster, "Mac" uniform

↑ y ↑

tag (just has to be uniquederived keys master key
This approach is used in TLS and IPsec to derive session keys during session setup
↳ General paradigm is the "expand" step in hash-based key-derivation (HKDF- RFC 3869)

↳
Consists of two procedures:

-

Etract: derive a master key from entropy
source (e.g., a user password)

*

pand: derive sub-keys from the master

key
Both steps rely on HMAC

