Thus far, se have assumed that parties have a shared key. Where does the shared key come from?
Can we do this using the tools we have developed so far?
So for in this course:

Can we use PRFs to construct secure key-agreement protocols?

Key agreement:
Alice \qquad Bob

Requirements:

1) $k_{1}=k_{2}=k$ with high probability
2) Eavesdropper cannot lam k (efficicili)

Merck puzzles: Suppose $f: x \rightarrow y$ is a function that is hard to invert ("ove-way function")
Alice
Bob
\longrightarrow for example, a secure PRG
$x_{1}, \ldots, x_{n} \leftarrow x$

$$
\xrightarrow{y_{1}=f\left(x_{1}\right), \ldots, y_{n}=f\left(x_{n}\right)}
$$

$$
G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{n} \text { is one-way }
$$

$i \stackrel{R}{\leftarrow}[n]$
find x_{i} such that $f\left(x_{i}\right)=y$: [solve the "puzzle"]

Suppose it takes time t to solve a puzzle. Adversary needs time $O(n t)$ to solve all puzzles and identify key. Honest parties work in time $O(n+t)$.

Only provides linear gap between honest parties and adversary

Can we get a super-polynomial gas just using PREs?
Can we get a super-linear gap just using PRGs?

Very difficult! [Impogliczzo-Rudich]
Very difficult! [Barak-Mahmoody]
result holds even if start with a one - way permutation
Impagliazzo-Rudich: Proving the existence of key-agrement thant mates black-bor use of PRG implies $P \neq N P$.
we will turn to algebra/number theory for new sources of hardness to build key agreement protocols.
Definition. A group consists of a set \mathbb{G} together with an operation * that satisfies the following properties:

- Closure: If $g_{1} g_{2} \in \mathbb{G}$, then $g_{1} * g_{2} \in \mathbb{G}$
- Associativity: For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}, g_{1} *\left(g_{2} * g_{3}\right)=\left(g_{1} * g_{2}\right) * g_{3}$
- Identity: There exists an element $e \in \mathbb{G}$ such that $e^{*} g=g=g * e$ for all $g \in \mathbb{C}$
- Inverse: For every element $g \in \mathbb{G}$, there exists an element $g^{-1} \in \mathbb{C}$ such that $g^{*} g^{-1}=e=g^{-1} * g$

In addition, we say a group is commutative (or abelion) if the following papery also holds:
-Commutative: For all $g_{1}, g_{2} \in \mathbb{C}, g_{1} * g_{2}=g_{2} * g_{1}$
Notation: Typically, we will use "." to denote the group operation (unless explicitly specified otherwise). We will write g^{x} to denote $\underbrace{g \cdot g \cdot g \cdots g}_{x \text { times }}$ (the usual exponential notation). We use " 1 " to denote the multiplicative identity

Examples of groups: $(\mathbb{R},+)$: real numbers under addition
$(\mathbb{Z},+)$: integers under addition
$\left(\mathbb{Z}_{p},+\right)$: integers modulo p under addition [sometimes written as $\left.\mathbb{Z} / p \mathbb{Z}\right]$
The structure of \mathbb{Z}_{p}^{*} (an important group for cryptography):
$\mathbb{Z}_{p}^{*}=\left\{x \in \mathbb{Z}_{p}\right.$: there exists $y \in \mathbb{Z}_{p}$ where $\left.x y=1(\bmod p)\right\}$
τ the set of elements with multiplicative inverses modulo p

What are the elements in \mathbb{Z}_{p}^{*} ?
Bezout's identity: For all pasitve integers $x, y \in \mathbb{Z}$, there exists integers $a, b \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(x, y)$.
Corollary: For prime $p, \mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$.
Proof. Take any $x \in\{1,2, \ldots, p-1\}$. By Bezout's identity, $\operatorname{gcd}(x, p)=1$ so there exists integers $a, b \in \mathbb{Z}$ where $1=a x+b p$. Modulo p, this is $a x=1(\bmod p)$ so $a=x^{-1}(\bmod p)$.

Coefficients a, b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:
Euclidean alogithm: algorithm for computing $\operatorname{ged}(a, b)$ for positive integers $a>b$:
relies on fact that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a(\bmod b)$:
to see this: take any $a>b$
\rightarrow we can write $a=b \cdot q+r$ where $q \geqslant 1$ is the quotient and
$0 \leqslant r<b$ is the remainder
$\rightarrow d$ divides a and $b \Longleftrightarrow d$ divides b and r

$$
\rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)=\operatorname{gcd}(b, a(\bmod b))
$$

gives an explicit algorithm for computing ged: repeatedly divide:

$$
\begin{array}{lll}
\operatorname{gcd}(60,27): \quad 60=27(2)+6 & {[q=2, r=6] \leadsto \operatorname{gcd}(60,27)=\operatorname{gcd}(27,6)} \\
27^{2}=6(4)+3 & {[q=4, r=3] \leadsto \operatorname{gcd}(27,6)=\operatorname{gcd}(6,3)} \\
6^{4}=3(2)+0 & {[q=2, r=0] \leadsto \operatorname{gcd}(6,3)=\operatorname{gcd}(3,0)=3}
\end{array}
$$

"rewind" to recover coefficients in Bezant's identity:

Iterations needed: $O(\log a)$ - ie, bittength of the input [worst case inputs: Fibonoci numbers]

Implication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)

