
Thus far, we have somed thatparties have a stared key. Where does the shared keycome from?

Can we do this using the tools we have developed so far?
So far in this course:

I
CPA-secure encryption

PRES =>authenticated encryptioni Key agreement:
MAC

Alice Bob
->

Can we use PREs to constructsecure key-agreement I - Requirements:i
-- 11k, =k =

=k

protocols? - with high
it

I
Ya
2

probability
2) Eavesdropper

cannotlearn

k (efficiently)

Wepuzzles:Suppose 7: x-y is a function thatis hard to invert

I"one-way function")
Alice Bob ->for example, a secure PRG
-

X. , . . ., Xn =X 6:90,134 - 20,13" is
one-way

-xitf(x)
i = [n]

find x:such thatf(xi)=y;[solve the "puzzle")
--AE(K,m) derive a key k from Xi

*

we assume that the

↓
-

derived from Xi solution is unique

try each key I to

decryptciphertext

Suppose ittakes time t to solve a puzzle. Adversary needs time Oluth to solve all puzzless and identifykey.
Honestparties

work in time O(n+t).

↳
Only provides wargapbetween honestparties and adversary

Can we geta super-polynomial gap justusing ·PRGs? Verydifficult![Impagliazzo- Rudich]
Can we geta super-linear gap just using

PRGs? Very difficult! [Barak - Mahmoody]
result holds even if startwith a

~ one-waypermutation2

Impagliazzo- Rudich: Going the existence of key-agreementthatmakes dabox use of PRC implies PF NP.

We will turn to algebral number theoryfor new sources of hardness to build key agreementprotocols.

Definition. Agroupconsists of a settotogether with an operation
*thatsatisfies the following properties:

-

osure: If g,,927D, then g,*gzC $

Associativityfor alle2.gsC,g*CgXgsF(g.*gel g x forallge0
-Inverse: For everyelementgtD, there exists an elementgitsuch thatgyg"

=

e
=

g
+

*g
In addition, we say a groupis commutative (or abelion) ifthe following propertyalso holds;

-ommutative:For all g,,g2
G6, g,*g2

=

g2*g,

#
called "multiplicative"notation

Notation: Typically, we will use
"o"to denote the

group operation
(unless explicitlyspecified otherwise). We will write

gy to denote

gig
(the usual exponential notation).We use "1"to demote themicativeidentity

#implesof groups:(TR, +): real numbers under addition
(K, t):integers under addition

(7p, +):integers modulopunder addition [sometimes written as (7/pI]
~ here, p is primeV

#structureofGoCan importantgroup for cryptography):
Ko*

=2x Tp: there exists y t<pwhere xy
=1 (mod p)]

& the setof elements with multiplicative inverses modulo
p

What are the elements in Ip*?
greatest common

↑ divisor

'sidentity: For all positive integers X,ytl, there exists integers a, bEK such that ax+ by
=gcd(x, y).

Cottary: For prime p. 15 (1,2, ..., p-13.
Proof. Take any XC91,2, ..., y-13. By Bezont's identity, god(X,p): 1 so there exists integers a, bECL where 1 = ax + bp.

Modulo
p,
this is ax = 1 (modp) so a

=

x"(mod p)

Coefficients a, b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:

#

an algorithm: algorithm for computing ged(a,b) for positive integers a>b:

relies on fact that god (a,b)
=ged(b, a (mod b):

to see this: take any
alb

↳>we can write a
=bigfr where g?1 is the quotient and

0 Ir<b is the remainder

↳ d divides a and bad divides b and r

->gcd(a,b) =gcd(b, r) =gcd(b, a (modb)

gives an explicit algorithm for computing god: repeatedly divide.

gcd(60,27): 60 =27(2) + 6(g=1,v =6) nx ged160,22) =gcd(27,6)
- -2 L

27
=6(4) +3(g=4,v = 3]mx gcd(2),6) = gcd(6,3)
--L
6 =

3(2) + 8 Ig =1,v =0]xx gcd(6,3) =

gcd (3,0) = 3

"rewind" to recover coefficients in Bezout's identity:
60 =27(2) + 6

extended S - ~
6 =60-

27(2)(27
- 360 - 27(2))4

L

Euclidean 27
=
=6(4) + 3 -> 3 =27- 5.4
-- 1-algorithm 6 =

3(2) + 8
=27(9) + 60(- 4)
4
coefficients

*

ons needed: O(loga) - i.e., bittength of the input (worst case inputs: Fibonacci numbers]

#ication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)

