Definition. A group \mathbb{G} is cyclic if there exists a generator g such that $\mathbb{G}=\left\{g^{0}, g^{1}, \ldots, g^{|G|-1}\right\}$.
Definition. For an element $g \in \mathbb{G}$, we write $\left\{g \mid=\left\{g^{0}, g^{1}, \ldots, g^{|G|-1}\right\}\right.$ to denote the set generated by g (which need not be the entire set. The cardinality of $\langle g\rangle$ is the order of g (ie., the size of the "subgroup" generated by g)
Example. Consider $\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$. In this cave,
$\langle 2\rangle=\{1,2,4\} \quad\left[2\right.$ is not a generator of $\left.\mathbb{Z}_{7}^{*}\right] \quad$ ord $(2)=3$
$\langle 3\rangle=\{1,3,2,6,4,5\} \quad\left[3\right.$ is a generator of $\left.\mathbb{Z}_{7}^{*}\right] \quad \operatorname{ord}(3)=6$
Lagrange's Theorem. For a group \mathbb{G}, and any element $g \in \mathbb{G}$, ord $(g)||G|$ (the order of g is a divisor of $| G \mid$).
\longrightarrow For \mathbb{Z}_{p}^{*}, this means that ord $(g) \mid p-1$ for all $g \in G$
Corollary (Fermat's Theorem): For all $x \in \mathbb{Z}_{p}^{*}, x^{p-1}=1(\bmod p)$
Proof. $\left|\mathbb{Z}_{p}^{*}\right|=|\{1,2, \ldots, p-1\}|=p-1$
By Lagrange's Theorem, $\operatorname{ord}(x) \mid p-1$ so we can write $p-1=k \cdot \operatorname{ord}(x)$ and so $x^{p-1}=\left(x^{\text {ord }(x)}\right)^{k}=1^{k}=1(\bmod p)$
Implication: Suppose $x \in \mathbb{Z}_{p}^{*}$ and we want to compute $x^{y} \in \mathbb{Z}_{p}^{*}$ for some large integer $y>p$
\longrightarrow we can compute this as

$$
x^{y}=x^{y(\bmod p-1)}(\bmod p)
$$

since $x^{p-1}=1(\bmod p)$
\longrightarrow Specifically, the exponents operate modulo the order of the group
\rightarrow Equivalently: group $\langle g\rangle$ generated by g is isomorphic to the group $\left(\mathbb{Z}_{q},+\right)$ where $q=$ ord (g)

$$
\begin{aligned}
& \langle g\rangle \cong\left(\mathbb{Z}_{q},+\right) \\
& g^{x} \mapsto x
\end{aligned}
$$

Notation: g^{x} denotes $\overbrace{g \cdot g \cdot \cdots \cdot g}^{x \text { times }}$
g^{-x} denotes $\left(g^{x}\right)^{-1} \quad$ [inverse of group element g^{x}]
$g^{x^{-1}}$ denotes $g^{\left(x^{-1}\right)}$ where x^{-1} computed $\bmod \operatorname{ord}(g)$ - need to make sure this inverse exists!
Computing on group elements: In cryptography, the grays we typically work with will be large (e.g., 2^{256} or 2^{1024})

- Size of group element (\# bits): $\sim \log |G|$ bits (256 bits $/ 2048$ bits)
- Group operations in $\mathbb{Z}_{p}^{*}: \log p$ bits per group element addition of $\bmod p$ elements: $O(\log p)$
multiplication of $\bmod p$ values: naively $O\left(\log ^{2} p\right)$
Karatsuba $O\left(\log ^{1.21} p\right)$
Schönhage-Strassen (GMP library): $O(\log p \log \log p \log \log \log p)$
best algorithm $O(\log p \log \log p)$ [2019]
\longrightarrow not yet practical ($>2^{4096}$ bits to be faster...)
exponentiation: using repeated squaring: $g, g^{2}, g^{4}, g^{8}, \ldots, g^{1 \log p]}$, can implement using $O(\log p)$ multiplications $\left[O\left(\log ^{3} p\right)\right.$ with naive multipitication]
\longrightarrow time/space trade-offs with more precomputed values
division (inversion): typically $O\left(\log ^{2} p\right)$ using Euclidean algorithm (can be improved)

Computational problems: in the following, bt \mathbb{G} be a finite cyclic group generated by g with order q

- Discrete log problem: sample $x \mathbb{R} \mathbb{Z}_{q}$
given $h=g^{x}$, compute x
- Computational Diffie-Hellman (COH): sample $x, y \stackrel{\ell}{\sim} \mathbb{Z}_{q}$ given g^{x}, g^{y}, compute $g^{x y}$
-Deäsinal Diffie-Hellman (DDH): sample $x, y, r \mathbb{Z}_{q}$ distinguish between $\left(g, g^{x}, g^{y}, g^{x y}\right)$ vs. $\left(g, g^{x}, g^{y}, g^{r}\right)$

Each of these problems translates to a corresponding computational assumption:
Definition. Let $b=\langle g\rangle$ be a finite cyclic group of order q (where q is a function of the security parameter λ) The DDH assumption holds in G if for all efficient adversaries A :

$$
\operatorname{Pr}\left[x, y \in \mathbb{Z}_{p}: A\left(g, g^{x}, g^{y}, g^{x y}\right)=1\right]-\operatorname{Pr}\left[x, y, r \mathbb{R}^{\mathbb{R}} \mathbb{Z}_{p}: A\left(g, g^{x}, g^{y}, g^{r}\right)=1\right]|=\operatorname{neg}|(x)
$$

The CDH assumption holds in \mathbb{G} of for all efficient adversaries A :

$$
\operatorname{Pr}\left[x, y^{2} \approx Z_{q}: A\left(g, g^{x}, g^{y}\right)=g^{x y}\right]=\operatorname{neg} \mid(\lambda)
$$

The discrete log assumption holds in G if for all efficient adversaries A :

$$
\operatorname{Pr}\left[x \in \mathbb{Z}_{q}: A\left(g, g^{x}\right)=x\right]=\operatorname{neg}(\lambda)
$$

Certainly: if DDH holds in $G \Rightarrow C D H$ holds in $\mathbb{G} \Rightarrow$ discrete log holds in G

there are groups where CDH believed to be hard, but DDH is easy

Major open problem: does this hold?
Can we find a goop where discrete log: hard but CDH is easy?

Diffie-Helman key exchange

- Let \mathbb{G} be a group of prime order p (and generator g) - chance of group, generator, and order freed by standard

Compute $g^{x y}=\left(g^{y}\right)^{x} \quad$ compute $g^{x y}=\left(g^{x}\right)^{y}$

But usually, we want a random bit-string as the key, not random group element
\rightarrow Element $g^{x y}$ has $\log p$ bits of entropy, so should be able to obtain a random bitstring with $l<\log p$ bits
\rightarrow Solution is to use a "randomness extractor"
\rightarrow Information-therretce constructions based on universal hashing / pairuise-independent hashing (loses some bits of entropy)
$\left.\begin{array}{rl}\rightarrow & \left.\text { Use a "random oracle" or an "ideal hash function" } \quad \text { [Heuristic : SHA -256 }\left(g, g^{x}, g^{y}, g^{x y}\right)\right]\end{array}\right]\left[\begin{array}{l}\text { binds the key to } \\ \text { the entire } \\ \text { transcript }\end{array}\right]$ (very efficient in practice)
\rightarrow Arguing security: 1. Rely on HashDH assumption ${ }_{4}\left(g, g^{x}, g^{y}, H\left(g, g^{x}, g^{y}, g^{x y}\right) \approx\left(g, g^{x}, g^{y}, r\right)\right.$
where $H: b^{4} \rightarrow\{0,1\}^{n}$ and $r \leqslant\{0,1\}^{n}$
2. Model H as ideal hash function $H: G^{4} \rightarrow\{0,1\}^{n} \quad$ (ie., random orade) and rely on CDH in (6) [inability to evaluate H on $g^{x y} \Rightarrow$ output is random string]

Instantiations: Discrete \log in \mathbb{Z}_{p}^{*} when p is 2048-bits provides approximately 128-bits of security $\tilde{O}(\sqrt[3]{\log p})$
\rightarrow Best attack is General Number Field Sieve (GNFS) - runs in time $2^{(\hat{l o g} p)}$ time

Much better than brute force - $2^{\log p}$
\rightarrow Need to choose p carefully
(eg., avoid cases where $p-1$ is smooth)
for DDH applications, we usually set $p=2 q+1$ where q is also a prime (p is a "safe prime") and work in the subgroup of order q in \mathbb{Z}_{p}^{*} (\mathbb{Z}_{p}^{*} has order $p^{-1}=2 q$)
\uparrow cube root in expront not ideal!
if we want to double security, need to increase modulus by $8 x$? group operations all (eg., 16384-bit modulus for 256 bits scale line early for core) in of security) bitleagth of the modulus

Elliptic curse groups: only require 256 tit modulus for 128 bits of security
\rightarrow Best attack is generic attack and runs in time $2^{\operatorname{bg} P / 2} \quad[\rho$-algorithm - can discuss at end of \quad semester $]$
\mapsto Much foster than using $\mathbb{Z}_{P}^{*}:$ several standards
$\left.\begin{array}{l}\text { - DIST P256, P384, P512 } \\ \text { - Dan Bernstein's curves: Curve 25519 }\end{array}\right\} \begin{aligned} & \text { can discuss more at end of semester } \\ & \text { (or in advanced crypto class) }\end{aligned}$
\rightarrow widely used for key-exchange + signatures on the well
When describing cryptographic constructions, we will work with an abstract group (easier to work with, less details to worry about)

