
cyclic groups are commutative ~defined to be the identity element

L 101 - 13.Cnition. A
group D

is pic if there exists a grator g
such that 0= <g0,g, ..., g

inition. For an element ge 6, we write (g) = <g0g, ..., gels to denote the set generated by 8 (which need not be the

entire set. The cardinality of (g) is the order of g
(i.e., the size of the "subgroup" generated by g)

#

ample. Consider [=91,2, 3, 4, 5,63. In this care, I means that good(g= 1
127=91,2, 43 (2 is not a generator of [*] ord(2) = 3

13) = 91,3,2,6,4,33 [3 is a generator of 77 ord(3) = G

-oge'stheorem.ForagroupA, andanyelementgeb,ord(g)
(IV) (the order of

g
is a divisor of1,he

&Fermat's Theorem): For all xtKP, xY"=1 (modp)
*o. (**) = 191,2, ..., p-13) = p-1

↓
for integer kn

ByLagrange's Theorem, ord (x)(p-1 so we can write pl=kord(x) and so x =(xord(x))" = 1": 1 (mod p)

#

ication: Suppose XCT and we want to compute x*<Tp* for some large integer y*P
↳ We can compute this as

xt =xy(mod 4-1 (mod p)
since X" = 1 (mod p

↳ Specifically, the exponents operate module the order of the group
↳ #

valently: group (g) generated by g isomorphic to the group ([g,t) where g
=ord(g)

(g) E(kg,t)
x +X
g

tation: g
*

denotes timeg
-"

denotes (g*)" [inverse of group element g
*]g

gx" denotes g(x) where Xcomputed mod ord (g)
- need to make sure this inverse ests!

mongroup elements: In cryptography, the groups we typically work with will be large (e.g., 2230 or 212
-

Size of group element (#bits): vlog IP) bits (256 bits/2048 bits)

-

Group operations in Ep: logp bits per group
element

addition of mod
p elements: O(log P)

multiplication of mod p
values: naively O(log"p)

Karatsuba OLlog""p)
Schinhage - Strassen (CMP library): O (log ploglog plogloglogp)
best algorithm Ollogploglogp) [2019]

->not yet practical (<24096 bits to be faster...)

exponentiation: using repeated squaring: g,g,g", go, ..., gllogPS, can implement using Ollog P)
multiplications [Ollog"p) with naive multiplication]
->

time/space trade-offs with more precomputed values

division (inversion): typically Ollogp) using Euclidean algorithm (can be improved

aproblemsor in thefollowinglet
o be a finite cyclic group generated by g

with order

given h=gY, compute x
-

nal Diffie-Hellman (CDH): sample x,y
=Fy

given gY,gY, compute gxy
-FinalDiffie-Hellman (DDH): sample x,y,

rg
distinguish between (g,g4,g8,g4) vs. (g,gY,gz, g)

Each ofthese problems translates to a corresponding computational assumption:
x

-e.g., g
=2

nition. Let D =

(g) be a finite cyclic group of order of (where g" is a function ofthe security parameter x)
The DDH assumption holds in D if for all efficientadversaries A:

Pr[x.y* p:A(g,gY,g8,g4) =1)-Pr2x,y,rep: A(g,gx,gt,gi) =13) =

neg((x)
The CDHassumption holds in $if for all efficientadversaries A:

Pr[x,y 4g:A(g,gY,gy)
=g4y) =

reg((x)
The discrete log assumption holds in 0if for all efficientadversaries A:

PrIxcky: Alg,gY) =x]
=

regl(x)

certainly:if DDH holds in D => CDH holds in D E discrete log holds in $

- ·??I

there are groups where CDH Major open problem:does this hold?

believed to be hard, butDDH is
Can we find a group

where discrete log is hard

butCDH is easy?
easy

Diffie-Hellman key exchange
-

Let o be a groupof prime order p (and generator g)-choice ofgroup, generator, and order fixed bystandard

Alice Bob
-

x

4y
compute 4 =(g2)* compute g* =(gY)*
↳ I

shared secret:gya

Butusually, we wanta random bring as the key, random group element

↳ Elementg" has logp bits of entropy, so should be able to obtain a random bitstring with <logp bits

↳ Solution is to use a "randomness extractor"

↳ Information- theoretic constructions based on universal hashing/pairwise-independenthashing
Closes some bits ofentropy)

#
tantiations. Discrete log in Tp*when p is 2048-bits provides approximately128-bits of securitygril

↳ Bestattack is General Number Field Sieve (GNES) - runs in time I time

Much better than brute force - 21094 &

cube rootin exponentnotideal!

↳ Need to choose p carefully ~having small prime factors if we wantto double security,
- le.g., avoid cases where p-l is smooth) need to increase modulus by8x!

for DDH applications, we usuallysetp=2g+1 where
groupoperations

all
↳ le.g., 16384- bitmodulus for 256 bits

q is also a prime (p is a "safe prime") and work in the scale linearly(or worse) in of security)
subgroup of order g in 7p*(Ishas order p-1=2g) bitlength of the modulus

Elliptic curve groups: only
require 256-bitmodulus for 128 bits of security

↳ Bestattack is generic attack and runs in time 2199/ [9-algorithm - can discuss
ateater
t I

↳ Much faster than using It: several standards

- NIST P256,4384, 4312 can discuss more atend of semester

-

Dan Bernstein's curves: Curve 25519
3 For in advanced crypto class)

↳

Widelyused for key-exchange
+

signatures on the web

When describing cryptographic constructions, we will work with an abstractgroup (easier to work with, less details to worryabout

↳ Use a "random oracle"or an "ideal hash function"[heistic: SHA-256(g,gY, 98, gx3)) (irren
very efficientin practice) good practice: hash all impactso

↳>

anysecurity: 1. Rely on HashDH assumption (g, g", gt, H1g,gY,g8,gx3) =(g,g",y2,r)
where H: D*-> 90,13" and r 90,13"

2. Model Has ideal hash function H:G*- 50,13" (i.e., random oracle) and

rely on CDHin $[inability to evaluate Hon g" => outputis random string)

Itantiations:Discrete log in <p*when p is 2048-bits provides approximately128-bits of security(gogy)
↳ Bestattack is General Number Field Sieve (GNES) - runs in time I time

Much better than brute force - 21094 &

cube rootin exponentnotideal!

↳ Need to choose p carefully ~having small prime factors if we wantto double security,
- le.g., avoid cases where p-l is smooth) need to increase modulus by8x!

for DDH applications, we usuallysetp=2g+1 where
groupoperations

all
↳ le.g., 16384- bitmodulus for 256 bits

q is also a prime (p is a "safe prime") and work in the scale linearly(or worse) in of security)
subgroup of order g in 7p*(Ishas order p-1=2g) bitlength of the modulus

Elliptic curve groups: only
require 256-bitmodulus for 128 bits of security

↳ Bestattack is generic attack and runs in time 2199/ [9-algorithm - can discuss
ateater
t I

↳ Much faster than using It: several standards

- NIST P256,4384, 4312 can discuss more atend of semester

-

Dan Bernstein's curves: Curve 25519
3 For in advanced crypto class)

↳

Widelyused for key-exchange
+

signatures on the web

When describing cryptographic constructions, we will work with an abstractgroup (easier to work with, less details to worryabout

