
TLS supports session setup using a "pre-shared key" (so full handshake not needed):

client server tent server
->

andshakey
-

firstmessage*
+PreSharedKey (id)

-

*sionTicket(nonce,id) =7 vulnerable to S ENCAECK, data) -- "O-RTTdata"

↓ replay attack

&
derived

from presharedone

presharedkeyfrom session secrets, nonce, and id
fresh key KAEB. KBEA derived for

rest of session (based on initial messages)
negotiated
I ~ identity of peer

key
oAKEprotocol: (key, it)
#enticity: Only party that knows key is id (i.e., the party identified by id)

rec.Allpartiesotherthanclientandidcannotdistinguishlayfrom
random (i.e., ly is hidis

↑

if we do not have client authentication, then

idclient is empty

Often also require secrecy: compromise of server in the future not affect secrecy of sessions in the past
L>
In TLS, server secret is a signing key

- fresh Diffie-Hellman secret used for each session is fresh ("ephemeral")
Compromising signing key allows impersonation of server, but does not break secrecy of past sessions

↳>
As we will see, not all AIE protocols provide forward secrecy

Very tricky to get right as we will see... Just use IS!

#rom PIE

supposeserver
has certificate authenticating a public key for a PIE scheme (CCA-secure

***/etcurtiaryreliank/ skeinor 3
Yields statically-secure ARE

(no forward secrecy)
↓

inBank InI(rKe<Decrypt(ska,the Compromise of skBank compromises all past
&essions

&

no client authentication

If we do not encrypt the nonce

ofreplayattackpossible (adversary replays messages from past session - e.g.,send Eve B,or

*

authentication: Bank has certificate identifying public key for PIE scheme

Alice has certificate identifying public key for signature scheme

k*R/cliCentertainits
certAlice ↓

(k, Alice)< DecCskBank, c)
check Alice matches is in certificate

k, Bank k, Alice Check Alice's signature on (r.C, "Bank") under plAlice in cert
Alice

Above protocol provides static (no forward secrecy) mutual authentication

Most variants to this protocol are broken! AKE very delicate:

-

Example: Suppose Alice encrypts (k,r) instead of CK, "Alice") like in the server-auth protocol above
- VnInerable to "identify misbinding" attack where Alice thinks she's talking to Bank but Bank thinks it's talking to Eve:

keR/AicHOECertorE
H K, Alice

O + Sign (skEre, (r,c, "Bank")
=>Bank thinks it's talking to Eve

cert
Eve

if Alice now sends "deposit this check into my account" to Bank,

Bank deposits it into Eve's account!

-observe that Eve did not break secrecy
(she does not know (), but nevertheless, broke

consistency-

Above protocols supported by TLS 1.2, but deprecated in TLS 1.3 due to lack of forward secrecy

totally broken without signature,
To get forward secrecy, useakeys: adversary can replace pl

of fresh public key
with plc and

~ for signature scheme learn Alice's
L ↑rovides one-sided authentication Chosen key

11/licrtBaniuWorSigManioblp orreal 3
↳

(signature binds pk to Bank)

Forward secure since each plc used only once
↓ ↓k-Dx(sk,c), and long-term secret is signing key
k, Bank k, I delete sk

↓
hardware security module (used to protect cryptographic secrets)

#blem: Does not provide "HSM security"
->

suppose adversary breaks into the bank and learns a single (pK,sk') pair with of Sign/SkBank, pk)
↳

Adversary can now impersonate the bank to any
client:

adversary always use the message (plc, certank, of 3 defending against this requires stress from client

&can decrypt keys for all clients that responds.

#rloEncLakH?Earl
on

the Provides HSM security: client chooses fresh pk each time, so signature

on pkfunctions as a "proof" that the other

↓ N ↓
↑arty possesses signing key for id identified by

k, Bank I k, I
cert

Bank

In
many cases, also want to hide the endpoint (the id identified by cert)

Possible by encrypting two keys (k,k') and
using

K to encrypt certank

Diffie-Hellman Key-exchange:substitute Diffie-Hellman handshake for the PKE scheme (simpler)
(TLS 1.2, 1.3)

