not ideal
<u>One-time pad</u> [Vigenure cipher where key is as long as the message!]
$K = \{0, 1\}^n$ Encrypt (k, m) : output $c = k \oplus m$
$M = \{o, l\}^n$ Decrypt(k, c): output $m = k \oplus C$
C = {0,13" bitwise exclusive or operation (addition mod 2)
<u>Correctness</u> : Take any $k \in \{0,1\}^n$, $m \in \{0,1\}^n$:
$Decrypt(k, Encrypt(k, m)) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = m (since k \oplus k = 0^{n})$
Is this secure? How do we define security?
- Given a ciphertext, cannot recover the key?
Not Good! Says nothing about hiding message. Encrypt (k, m) = m would be secure under this definition, but this scheme
is totally insecure intuitively!
- Given a ciphertext, cannot recover the message.
NOT GOOD! Can leak part of the message. Encrypt (k, (mo, mi)) = (mo, m, @ k). This encryption might be considered secure
but leaks half the message. [Imagine if message was "username: alice password: 123456"
- Given a ciphertext, cannot recover any bit of the message.
- Given a ciphertext, cannot recover any bit of the message. NOT GOOD! Can otill learn parity of the bits (or every pair of bits), etc. Information still leaked String that is - C
T Civre a vish shart have about the message
- Given a ciphertest, learn nothing about the message.
GOOD! But how to define this!
Coming up with good definitions is difficult! Definitions have to rule out all adversarial behavior (i.e., capture broad enough class
of attacks)
> Big part of crypto is getting the definitions right. Pre-1970s: cryptography has relied on intuition, but intuition is other
wrong! Just because I cannot break it does not mean
How do we capture "learning nothing about the message"?
If the key is randown, then ciphertext should not give information about the message.
Definition. A cipher (Encrypt, Decrypt) satisfies perfect secrecy if for all messages mo, m, E M, and all ciphertexts CEC:
$\Pr[k \stackrel{e}{\leftarrow} k : Encrypt(k, m_0) = C] = \Pr[k \stackrel{e}{\leftarrow} K : Encrypt(k, m_i) = C]$
probability that encryption of mo is c, where the powerbility is
taken over the rundom choice of
the key k

Perfect secrecy says that given a ciphertext, any two messages are equally likely.

=> Cannot infer anything about underlying message given only the ciphertext (i.e., "ciphertext - only" attack)

<u>Theorem</u>. The one-time pad sortisfies perfect secrecy. <u>Proof</u>. Take any message $M \in \{0,1\}^n$ and ciphertext $C \in \{0,1\}^n$. Then, $D \subseteq C \in \mathbb{R}$ so $U^n \in \mathbb{R}$, $U \in \mathbb{R}$ so $U^n \in \mathbb{R}$.

$$Pr\left[k \stackrel{R}{\leftarrow} 90,13^{n} : Encrypt(k,m) = C\right] = Pr\left[k \stackrel{R}{\leftarrow} 90,13^{n} : k \oplus m = C\right]$$
$$= Pr\left[k \stackrel{R}{\leftarrow} 90,13^{n} : k = m \oplus C\right]$$
$$= \frac{1}{2^{n}}$$

This holds for all messages m and ciphertexts c, so one-time put satisfies perfect secrecy.

Are we done? We now have a perfectly-secure cipher!

No! Keys are very long! In fact, as long as the message... [if we can share keys of this length, can use some mechanism to] "One-time" restriction Molleable.

Issues with the one-time pad:

<u>One-time</u>: Very important. Never reuse the one-time pad to encrypt two messages. Completely broken!

Suppose $C_1 = k \oplus m_1$ and $C_2 = k \oplus m_2$ Then, $C_1 \oplus C_2 = (k \oplus m_1) \oplus (k \oplus m_2)$ — Can leverage this to recover messages $= m_1 \oplus m_2$ — learn the xor of two messages! One-time pad reuse: — Project Veron a (U.S. counter-intelligence operation against U.S.S.R during Cold War) \Rightarrow Soviets reused some pages in codebook ~ led to decryption of ~ 3000 messages sent by Soviet intelligence over 37-year period [notably exposed espionage by Julius and Ethal Rosenberg] — Microsoft Point-to-Point Tunneling (MS-PPTP) in Windows 98/NT (used for VPN)

> Some key (in stream cipher) used for both server -> client communication AND for client -> server communication -> (RC4)

- 802.11 WEP: both client and server use same key to encrypt traffic

Many problems just beyond one-time pad reuse (can even recover key after observing small number of frames!)

- Malleable: one-time pad provides no integrity; anyone can modify the ciphertext:

^C replace c with c⊕m

=> k @ (c @ m') = m @ m' <- adversary's change now xored into original message

Theorem (Shannon). If a cipher satisfies perfect secrecy, then $|K_0| \ge |M|$.

Intuition: Every ciphertext can decrypt to at most [K] < [M] messages. This means that ciphertext leaks information about the message (not all messages equally likely). Cannot be perfectly secret.

<u>Proof</u>. We will use a "counting" angument: Suppose [K] < [M]. Take any ciphentext C ← Encrypt (k,m) for some k&K, m eM. This ciphentext can only decrypt to at most [K] possible messages (one for each choice of key). Since [K] < [M], there is some message m' € M such that

By correctness of the cipher,

This means that

Take-away: Perfect secrecy requires long keys. Very impractical lexcept in the most critical scenarios - exchanging daily codebooks)

If we want something efficient/usable, we need to compromise somewhere. - Observe: Perfect secrecy is an information-theoretic (i.e., a mathematical) property Even an infinitely-powerful (computationally-unbounded) adversary cannot break security We will relax this property and only require security against computationally-bounded (efficient) adversaries Idea: "compress" the one-time pad: we will generate a long random-looking string from a short seed (e.g., S & 20,13¹²⁹).

$$\frac{s}{G(s)} = \frac{1}{G(s)} + \frac{1$$

t_ n is the "stretch" of a PRG

Stream cipher: K = {0,1}2 $\mathcal{M} = \mathcal{C} = \{0, 1\}^n$ Encrypt (k, m): $C \leftarrow m \oplus G(k)$ Instead of xoring with the key, we use the key to derive a "stream" of random $Decrypt(k, c): m \leftarrow C \oplus G(k)$ looking bits and use that in place of the one-time pad

If $\lambda < n$, then this scheme cannot be perfectly secure! So we need a <u>different</u> notion of security

Intuitively: Want a stream ciples to function "like" a one-time pad to any "reasonable" adversary. => Equivalently: output of a PRG should "look" like writionly-random string

What is a reasonable adversary?

- Theoretical answer: algorithm runs in (probabilistic) polynomial time
 Practical answer: runs in time < 2⁸⁰ and space < 2⁶⁴ (can use larger numbers as well)

Goal: Construct a PRG so no efficient adversary can distinguish output from random.

Captured by defining two experiments or games:

adversary $t = t \leq G(s)$ Experiment 0 $b \in \{0,1\}$ $\begin{bmatrix} a d versery \\ c d verser \\ c d v$ the input to the adversary (t) is often called the challenge

Adversary's goal is to distinguish between Experiment O (pseudorandom string) and Experiment I (traly random string) L> It is given as input a string to leagth n (either $t \in G(s)$ or $t \in \{0,13^n\}$) Remember : adversary knows the algorithm G; → It outputs a guess (a single bit b ∈ fo,13) only seed is hidden! define the distinguishing advantage of A as Do Not RELY ON DOCOLLED COLE (D) = 110- W.1 SECURITY BY OBSCURITY Let Wo := Pr[adversary outputs 1 in Experiment 0] $PRGAJ_J[A, G] := [W_0 - W_1]$ W1 := Pr[adversary outputs I in Experiment 1]

probabilistic polynomial time

Definition. A PRG G: {0,13² -> {0,13ⁿ is secure if for all efficient adversaries A, smaller than any inverse polynamial PRGAdu[A,G] = real (2)) eg., 22, 2 by 2 L> negligible function (in the input length)

- Theoretical definition: f(x) is negligible if $f \in O(x^{c})$ for all CEIN

- Practical definition: quantity 5 2-80 or 5 2-128