Requirements:

- Correctness: for all messages m:

$$
\operatorname{Pr}[\sigma \leftarrow \text { Setup },(c, \pi) \leftarrow \operatorname{Commit}(\sigma, m) ; \operatorname{Verity}(\sigma, c, m, \pi)=1]=1
$$

- Hiding: for all common reference strings $\sigma \in\{0,1\}^{n}$ and all efficient A, following distributions are computationally indistinguishable:

$$
\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right|=\operatorname{neg} \mid(\lambda)
$$

-Binding: for all adocrsaies A, if $\sigma \leftarrow$ Setup, them

$$
\operatorname{Pr}\left[\left(m_{0}, m_{1}, c, \pi_{0}, \pi_{1}\right) \leftarrow A: m_{0} \neq m_{1} \text { and } \operatorname{Verity}\left(\sigma, c, m_{0}, \pi_{0}\right)=1=\operatorname{Verify}\left(\sigma, c, m_{1}, \pi_{1}\right)\right]=\text { neg }
$$

A 2K protean for graph 3-coloring:

Intuitively: Prover commits to a coloring of the graph
Verifier challenges prover to reveal coloring of a single edge
Prover reveals the coloring on the chosen edje and opens the entries in the commitment

Completeness: By inspection [if coloring is valid, prover can always answer the challenge correctly]

Soundness: Suppose G is not 3 -colorable. Let K_{1}, \ldots, K_{n} be the coloring the prover committed to. If the commitment scheme is statistically binding, c_{1}, \ldots, c_{n} uniquely determine K_{1}, \ldots, K_{n}. Since G is not 3 -colorable, there is an edge $(i, j) \in E$ where $K_{i}=K_{j}$ or $i \notin\{0,1,2\}$ or $j \notin\{0,1,2\}$. [otherwise, G is 3 -colorable with coloring K_{1}, \ldots, K_{n}.] Since the verifier chooses an edge to check at random, the verifier will choose (i,j) with probability $1 /|E|$. Thus, if G is not 3-colorable,
$\operatorname{Pr}[$ verifier rejects $] \geqslant \frac{1}{|E|}$
Thus, this protocol provides soundness $1-\frac{1}{|E|}$. We can repeat this protocol $O\left(|E|^{2}\right)$ times sequentially to reduce soundness error to
$\operatorname{Pr}[$ verifier accepts proof of false statement $] \leqslant\left(1-\frac{1}{|E|}\right)^{|E|^{2}} \leqslant e^{-|E|}=e^{-m}\left[\right.$ since $\left.1+x \leqslant e^{x}\right]$

Zero Knowledge: We reed to construct a simulator that outputs a valid transcript given only the graph G as input.
Let V^{*} be a (possibly malicious) verifier. Construct simulator S as follows:

1. Run V^{*} to get σ^{*}.
2. Choose $K_{i} \leftarrow\{0,1,2\}$ for all $i \in[n]$.

Let $\left(c_{i}, \pi_{i}\right) \in$ Commit $\left(\sigma^{*}, K_{i}\right)$
Simulator does not know coloring
Give $\left(c_{1}, \ldots, c_{n}\right)$ to V^{*}.
3. V^{*} outputs an edge $(i, j) \in E$
4. If $K_{i} \neq K_{j}$, then S outputs $\left(K_{i}, K_{j}, \pi_{i}, \pi_{j}\right)$.

Otherwise, restart and try again (it fails λ times, then abort)
Simulator succeeds with probability $2 / 3$ lover choice of $\left.K_{1}, \ldots, K_{n}\right)$. Thus, simulator produces a valid transcript with prob. $1-\frac{1}{3^{\lambda}}=1-$ neg (λ) after λ attempts. It suffices to show that simulated transcript is indistinguishable from a real transcript

- Real scheme: prover opens K_{i}, K_{j} where $K_{i,} K_{j} \in\{0,1,2\}$ [since prover randomly permutes the colors]
- Simulation: K_{i} and K_{j} sampled uniformly from $\{0,1,2\}$ and conditioned on $K_{i} \neq k_{j}$, distributions are identical

In addition, (i, j) output by V^{*} in the simulation is distributed correctly since commitment scheme is computationally-hiding (e.g. V^{*} behaves essentially the same given commitments to a random coloring as it does given commitment to a valid coloring

If we repeat this protocol (for soundness amplification), simulator simulate one transcript at a time
Summary: Every language in NP has a zeroknowledje proof (assuming existence of PREs)

$$
\tau
$$

PRGs imply commitments

