
3-message protocols thatsatisfy completeness, special soundness, and HUIK are called &-protocols
↳ E-protocols are useful for building signatures and identification protocols

How can a prover
both owledge and

yetbe zero-knowledge at the same time?
↳ Extractor operates by"rewinding"the prover

(ifthe
prover

has good success probability, itcan answer mostchallenges correctly.
↳ Butin the real (actual) protocol, verifier cannotrewind (i.e., verifier only sees prover on fresh protocol executions), which can

provide zero-knowledge.

Many extensions ofSchnorn's protocol to prove relations in the exponent.

(NI2K)

-
iteractive zero-knowledge:Can we construct a zero-knowledge proof system where the proof

is a single message from the

prover
to the verifier?

prover (x,w) verifier (X)

&

Em1
↓
b t90,13

NIZKs for NP unlikely to existfor NY (unless NP = BPP), but possible in the random oracle

model (as well as in the common reference string model)

=Shamir heuristic: NICKs in random oracle model

Recall

Schrow'sprotocol
for

proving knowledge ofdiscrete login
Verifier (g,gY)

-e
-

r1X
In this protocol, verifier's message is uniformlyrandom

u =g land in fact, is "public coin"
- the verifier has no

- gz Secrets)

z = r +cx

#idea: Replace the verifier's challenge with a hush function H:30,13*- 4p
Namely, instead of sampling (1p, we sample (5H(g,h,u). prover can now compute this quantityon its own!

Completess, zero-knowledge, proofofknowledge follow by a similar analysis as Schnorr (will rely on random oracle)

Signatures from discrete log in RO model (Schnorr):
-

Setup:x* Ip
vk: (g,h =gY) sk:X

-

Sign (sk, m):r
=
y I signature

is a NIIK proof of knowledge
u =gr -H(g,h,u,m) z =r +cx of discrete log of h (with challenge

o
=(u,z) derived from the message m)

-

Verify (rK, m, o):write o =(n,z), compute (=4(g,h,u,m) and accept if
=u.h
g

vk =h



Security essentially follows from securityof Schnow's identification protocol (together with Fiat-Shamir
↳ forged signature on a new message in is atoknowledge ofthe discrete log (can be reacted from adversary)

Length of Schnorr's signature:vk:(g,h=gY) 5: (g", Heh,g,m), z =r +xx) verification checks that g*=gh"
sk: X

can be computed given
other components, so ->10) =2.1D) [512 bits if 161 =223]
do notneed to include

But, can do better... observe thatchallenge a only needs to be 18-bits (the knowledge error ofSchmore is Xic1 where C

is the setof possible challenges), so we can sample a 128-bitchallenge rather than 256-bitchallenge. Thus, instead of sending
(gr, z), instead send (C,z) and compute gr=94" and thatc=HIg,h,gr, m). Then resulting signatures are 3bits

128 bit challenge
256 bitgroup element

#rtantnote: Schnorr signatures are omized, and securityrelies on having god randomness

↳ What happens ifrandomness is reused for two differentsignatures?
Then, we have

G,
=(g,,H(g,h,g, m), z, =r+x,x) z, - zz =(c-x)x =x =(,-x)"(z,-z)3

02 =(g,c =H(g,h,gim2), z=r+(x)

This is precisely the setof relations the knowledge extractor uses to

recover the discrete log & (i.e., the signing key)!

#rnistic Schnor:We wantto replace the random value & & up with one thatis deterministic, butwhich does notcompromise security
↳>Derive randomness from message using a PRI. In particular, signing key includes a secret PRI key k, and

signing algorithm computes 5 =F(k,m) and 0 = Sign/sk,m;r).
↳ Avoids randomness reuse/misuse vulnerabilities.

digital signature algorithm/elliptic-curve DSA/

~TLS protocol -
In practice, we use a variantofSchnour's signature scheme called DSA/ECDSA

butwe use it because Schnow
↳ larger signatures (2 group elements

- 512 bits) and proofonlyin "generic group"model I was patented ... until 2008 I

ECDSAsignatures (over a group D of prime order p):
-

Setup:X* Ip
vk: (g,h =gY) sk:X

deterministic function

I
specifically, f(u) parses a

=(x,y) GFg" where Ig is

I-Sign (sk, m):a * 4p A specified by ECDSA the base field over which the elliptic curve is defined,

u =g- r =f(u) t[p and outputs (modp), where I is viewed as a

S =(H(m) +r.x)/x exp value in 20, g(
o

=(r,s)
- Verify (rk, m, o):write o=(r,s), compute a = gH(m)/spr/s, accept it r =f(u)

Uk =h

H(m)/s(r/s =gH(m)+rx)/s =g[4(m)+rx)/er(m)+rx)a=aCrectness:U I g g and r =f(g4)

Securityanalysis non-trivial:requires either strong assumptions or modeling as an "ideal"group
Signature size:5 =(r,s) ->Yp - for 128-bitsecurity, pr2 so 101:312 bits (can use P-256 or Curve 25519)


