3-message protocols that satisfy completeness, special soundness, and HVZK are called \sum-protocols $\rightarrow \sum$-protocols are useful for building signatures and identification protocols

How can a prover both prove knowledge and yet be zero-knowledge at the same time?
\rightarrow Extractor operates by "rewinding" the prover lift the prover has good success probability, it can answer most challenges correctly.
\longrightarrow But in the real (actual) protocol, verifier cannot rewind (ie., verifier only sees prover on fresh protocol executions), which can provide zero-knouledge.

Many extensions of Schnorr's protocol to prove relations in the exponent.
(NICK)
Non-interactive zeno-knowledye: Can we construct a zero-knowledge proof system where the prot is a single message from the prover to the verifier?

NIZKs for NP unlikely to exist for NP (unless NP \subseteq BPP), but possible in the random orack model (as well as in the common reference string model)

Fiat-Shamir heuristic: NIZKs in random orade model
Recall Schnorr's protocd for proving knowledge of discrete log:

$$
\text { queer }\left(g, h=g^{x}, x\right)
$$

verifier $\left(9, g^{x}\right)$

In this protocol, verifier's message is uniformly random land in fact, is "public coin" - the verifier has no

$$
c \leftarrow^{R} \mathbb{Z}_{p}
$$ secrets)

verity that $g^{z}=u \cdot h^{c}$

Key idea: Replace the verifier's challenge with a hash function $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{p}$
Namely, instead of sampling $c^{\circledR} \mathbb{Z}_{p}$, we sample $c \leftarrow H(g, h, u)$. \longleftarrow prover can now compute this quantity on its own!
Completers, zero-knouledge, proof of knowledge follow by a similar analysis as Schnorr [will rely on random orack]
Signatures from discrete log in RO model (Schnorr):

- Setup: $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$

$$
\begin{array}{rll}
v k:\left(g, h=g^{x}\right) & s k: x & \\
-\operatorname{Sign}(s k, m): r \& \mathbb{Z}_{p} \\
& u \leftarrow g^{r} \quad c \leftarrow H(g, h, u, m) \quad z \leftarrow r+c x \\
& \sigma=(u, z)
\end{array} \quad \begin{aligned}
&
\end{aligned}
$$

signature is a NI2K proof of knowledy of discrete log of h (with challenge derived from the message m)

- Verify $(v k, m, \sigma)$: write $\sigma=(u, z)$, compute $c \leftarrow H(g, h, u, m)$ and accept if $g^{z}=u \cdot h^{c}$

$$
v k=h
$$

Security essentially follows from security of Schnorrer's identification protocol (together with Fiat -Shamir)
\rightarrow forged signature on a new message m is a prof of knoollegge of the discrete log (can be extracted from adversary)
Length of Schnori's signature: $v k:\left(g, h=g^{x}\right) \quad \sigma:(g^{r}, \underbrace{c=H\left(g, h, g^{r}, m\right)}, z=r+c x) \quad$ verification checks that $g^{z}=g^{r} h^{c}$
sk: x
can be computed given
$\left.\begin{aligned} & \text { other components, so } \\ & \text { do not ned to indue }\end{aligned} \Rightarrow|\sigma|=2.16 \right\rvert\, \quad\left[512\right.$ bits if $\left.|\sigma|=2^{256}\right]$
But, can do better... observe that challenge c only needs to be $188-b i t s$ (the knowledge error of Schnorrer is $1 / 1 \mathrm{cl}$ where C is the ext of possible challenges), so we can sample a 128 -bit challenge rather than 256 -bit challenge. Thess instead of sending $\left(g^{r}, z\right)$, instead send (c, z) and compute $g^{r}=g^{z} / h^{c}$ and that $c=H\left(g, h, g^{r}, m\right)$. Then resulting signatures are 384 bits 128 bit challenge \downarrow 256 bit group element
Important note: Schnore signatures are randomized, ard security relies on having good randomness
\longrightarrow What happens if randomness is reused for two different signatures?
Then, we have

$$
\left.\begin{array}{l}
\sigma_{1}=\left(g^{r}, c_{1} H\left(g, h_{1} g^{r}, m_{1}\right), z_{1}=r+c_{1} x\right) \\
\sigma_{2}=\left(g^{n}, c_{2}=H\left(g, h_{1} g, m_{2}\right), z_{2}=r+c_{2} x\right)
\end{array}\right\} z_{1}-z_{2}=\left(c_{1}-c_{2}\right) x \Rightarrow x=\left(c_{1}-c_{2}\right)^{-1}\left(z_{1}-z_{2}\right)
$$

This is precisely the set of relation the knouleleye extractor uses to recover the discrete $\log x$ (ie, the signing bey)!

Deterministic Schnorr: We want to replace the random value $r \leqslant \mathbb{Z}_{p}$ with ore that is deterministic, but which does nat compromise security
\rightarrow Derive randomness from message using a PRF. In particular, signing ky incudes a secure PRF key k, and Signing algorithm computes $r \leftarrow F(k, m)$ and $\sigma \leftarrow \operatorname{Sign}(s k, m ; r)$.
\rightarrow Avoids randomness reuse/misure valkenabilites.

\rightarrow larger signatures (2group elements - 512 bits) and proof only in "generic group" model $\left[\begin{array}{l}\text { but we use it because Schnor } \\ \text { was patented ... until } 2008\end{array}\right]$

ECDSA signatures (over a group B of prime order p):

- Setup: $x \mathbb{R} \mathbb{Z}_{p}$

$$
\begin{aligned}
& s \leftarrow(H(m)+r \cdot x) / \alpha \in \mathbb{Z}_{p} \\
& \sigma=(r, s)
\end{aligned}
$$

- Verify $(v k, m, \sigma)$: write $\sigma=(r, s)$, compute $u \leftarrow g^{H(m) / s} h^{r / s}$, accept if $r=f(u)$

$$
v k=h
$$

Correctness: $u=g^{H(m) / s} h^{r / s}=g^{[H(m)+r x] / s}=g^{[H(m)+r x] /[H(m)+r x] \alpha^{-1}}=g^{\alpha}$ and $r=f\left(g^{\alpha}\right)$
Security analysis nontrivial: requires either strong assumptions or modeling \mathbb{G} as an "ideal" group
Signature size: $\sigma=(r, s) \in \mathbb{Z}_{p}^{2}$ - for 128 -bit security, $p \sim 2^{256}$ so $|\sigma|=512$ bits (can use $p-256$ or Curse 25519)

