
So far in this course : assumption is that adversary is classical .
How do things change if adversaries are gtn

? We won't
go
into detail but will state main results :

Grogorithy : Given black- box access to a function f :[N] → {0,13
,
Grover's algorithm finds an ✗ C- IN] such that

f- G) = 1 by making 0 (TN) queries to f.
"

Searching an unsorted database of size N in time 0 (Tn)
.

"

-

Gassing : Searching an unstructured database of size N requires time ☐ (N) - cannot do better than a linear

scan .

-

Quantum: Grover's algorithm is tight for unstructured search
. Any quantum algorithm for the unstructured search

problem requires making Allin) queries (to the function /database).
⇒ Quantum computes provide a quadr-at.ie speedup for unstructured search

,
and more broadly, function

inversion
.

Implicationsincryp-tograph.li Consider a one-way
function over a 128 - bit domain . The task of inverting a one-way function is to

find ✗ C- {0,13
'"

such that f-G) =y for some fixed target valve f. Exhaustive search would take

time 22128 on a classical computer , but using Grover's algorithm, can perform in time = Ñ28 = 26.4

⇒ For symmetric cryptography, need to doubt key-sizes to maintain same level of security (unless there are new quantum
attacks on the underlying construction itself .

⇒ Use AES-256 instead of AES-128 (n¥ a significant change !)

Similar algorithm can be applied to obtain a quantum collision- finding algorithm that runs in time ÑÑ where N is the

size of the domain (
compare to

ÑN for the best classic algorithm)
↳ Instead of using SHA -256

, use
SHA -384 ¥-1 a significant change)

↳ The quantum algorithm require a large amount of space , so not clear that this is a significant threat, but even if it were
,

using hash functions with 384- bits of output suffices for security

Maintaeaway : symmetric cryptography mostly unaffected by quantum computers
~

generally just require a modest increase in key size
↳ e.g. , symmetric encryption, MAC,s, authenticated encryption



Story more complicated for public-key primitives :
-

Simon's algorithm and Shor's algorithm provide polynomial-time algorithms for solving discrete log (in any group with an efficiently -

computable group operation
and for factoring

-

Both algorithms rely on period finding (and more broadly , on solving the hidden subgroup problem)
Intuition for discrete log algorith (as a period finding problem) :

- Let (g , h=g✗ ) be the discrete log instance in a group of prime order p
-

Let f : Zp ✗ Zp
→ G be the function

5- (x ,y1=g×ñY
-

By construction
,

f(✗+ a. y + 1) = g×+✗h
-

Y
- l
= g×hTg✗h

"
=

g
✗ hid = flay)

-

Thus
,
the element (2

,
-1) is the period of f

,
so using Shor's algorithm, we can efficient compute (4-1) from (

g.h),

which yields the discrete log of h

Thus , if large scale quantum computers come online, we will need new cryptographic assumptions for our public-key primitives
↳ All the algebraic assumptions we have considered so far (e.g. , discrete log , factoring) are broken

IÉitiithist? - Lots of
progress

in building quantum computers recently by both academia and industry leg, see initiatives

by Google , IBM ,
etc

.
)

-

To run Shor's algorithm to factor a 2048 - bit RSA modulus
,
estimated to need a quantum computer with

= 10000 logical qubits (analog of a bit in classical computers)

↳ With
quantum error correction

,
this requires 7 10 million physical qubits to realize

↳
To-day : machines with 10s of physical qubits , so still very far from being able to run Shor's

algorithm
-

Optimistic estimate : At least 20 -30 years away

SÉdwbH? Quantum computers would break existing key - exchange and signature schemes

-

Signatures : Future adversaries would be able to forge signatures under today's public keys , so if quantum computers come online
,
we

can switch to and only use post-quantum schemes

_Key-E✗change_ : Future adversaries can break confidentiality of today's messages (i.e, we lose forward secrecy)
- this is prob1em in

many scenarios (e.g., businesses want trade secrets to remain hidden for 50 years)

hIie: will just focus on getting post-quantum signatures (will not discuss post - quantum key exchange)

/ General approach for post
-

quantum cryptography : base hardness on assumptions believed to be hard on quantum
computers leg , lattice - based cryptography, isogamy

-based cryptography
)|

.

For digital signatures, we will show that Owfs ⇒ digital signatures
↳

Signatures can be based on symmetric primitives , so gives one approach to post -quantum signatures



mutsignatures:Letfix-y be a one-way function (e.g., a PRC or CRHE)

~
length ofmessage (M

=90,13")
-

Setup (1*, 1"): Sample Xi,b** fiETr], be90,13 and compute yi,b =f(x,b) Fi= [en), be 90,13
Set

sk:e.pk=800 800 ... no

y1, 22,1... Yu,

=90,13
-

Sign (sk, m): Output (Xim,, ..., Xn,ma)
-

Verity (uk, m, o):Output1 ifFitIn], f(xi,mi) =

yi,m; and 0 otherwise.

Trem. If I is one-way, then Lamportsignatures are secure one-time signatures (i.e., where adversary can only make I

signing query).

~
two signatures allow recovering secretkey!

stations: One-timeonly Iwill fix later!)

Long public keys, secretkeys, and signatures
-

Compose with CRHI to getpoly(X) - size parameters (independentof message length)
- Secretkey can be derived from PRG (e.g., just abits)
- Public keycan also be shortened to 2x bits (special case of Winternitz construction below)

Many combinatoric tricks to reduce signature size

One-time signatures are very fast(onlyneeds sometriceptography)
-

Veryuseful in streaming setting:each packetin stream should be signed, butexpensive to do so

-Instead:include pk for one-time signature in firstpacket
sign firstpacketusing standard signature algorithm (public key)
each packetincludes OTS public key for nextpacket:

(mo, UK),0 -> (m, rkz), 0, t (M2, UKs), O2, ...
↑

↑

signed using
many-time signature

secret key for his
signedin secret lay signssigned using



Stateful many-time signatures from one-time signatures:

Idea:use a tree of one-time signatures:

only uk needed -everynode is associated with a keypair for
to verifysignatures
sk

an OTS scheme

Uko,sko/2Uk, sk.
- each signing key used to sign verification keys
of its children

-
-

signing key for leaf nodes used to sign messages
- each leaf can only be used to sign one

~koo, Skow vko,sko, Uk,skn Uk, skin message
- need to keep track of which nodes

have been used (ateful signature)
Example:Signing message m using (rkoo, Skow):

->

to
-Sign Isk, vkollrki) To verify, check

-500 - Sign (sko, VKooll VKoi) Verify (rk, vkollok, 50):1
-

Om Sign (skoo, m) Verity(UKo, WKoollrkos, 500):1
-Output(UkolIrk, UKoollrkos, 50, 500, Om) Verify (rkoo, m)=1

Only rootuk needed here, all other keys included in a

Security(Intuition): - Keys for internal nodes onlyused to sign single message (verification keys of children)
· As long as leaf node never reused, then leaves are also onlyused once

- Securitynow reduces to one-time securityofsignature scheme

How to remove state?
-consider a tree with 24leaves and choose leaf atrandom for signing
- If we sign poly(x) messages, there will notbe a collision in the leaf with 1-regle) probability
- Wem:Signing key is exponential (need to store O(2Y) signing keys)
sation:Derive signing keys from a PRE! I

randomness to key-generation

Suki, sk:) <- KeyGen)14; PRECK, i)) algorithm

I
*

node index

parzigning lay
sk,l-public uk

O for mastime signature
To sign, choose random leaf.

Derive all (ski, Uki) along path. ( - (sk, vk.) * KeyGen (14; PRF(1,1))
Each node along path signs O E⑧

verification node associated

with children.- -
Leaf node signs ⑧ ⑪
message.

Signature contains complete (sko,UK) * KeyGen (14; PRECK, 101)
validation path from root

to leaf and signature of leaf on message.

Every internal node still
signs only one message.


