Question: Do PRGs exist?

Unfortunately, we do not know!

<u>Claim</u>: If PRGs with non-trivial stretch exist, then P # NP.

~u>>

<u>Proof</u>. Suppose G: $fo.13^{\lambda} \rightarrow fo.13^{n}$ is a secure PRG. Consider the following <u>decision</u> problem: on input $t \in \{o.13^{n}, does$ there exist $s \in \{o.13^{\lambda}, such that <math>t = G(s)$

This problem is in NP (in particular, s is the witness). If G is secure, then no polynomial-time algorithm can solve this problem (if there was a polynomial-time algorithm for this problem, then it breaks PRF security with advantage $1 - \frac{1}{2n-\lambda} > \frac{1}{2}$ since $n > \lambda$). Thus, $P \neq NP$.

In fact, there cannot even be a <u>probabilistic</u> polynomial-time algorithm that solves this problem with probability better than $\frac{1}{2} + \varepsilon$ for non-negligible $\varepsilon > 0$. This means that there is no BPP algorithm that breaks PRG security:

if PRGs exist, then NP & BPP

t bounded error probabilistic polynomial time

"randomized algorithms that solves problem with bounded (constant) error

Thus, proving existence of PRG requires resolving long-standing open questions in complexity theory!

=> Cryptography: We will assume that certain problems are hard and base constructions of (hopefully small) number of conjectures.

Theoretical problems assumptions can be that certain mathematical problems are intractable (e.g., factoring) is typically for public-key cryptography (Ind half of this course)

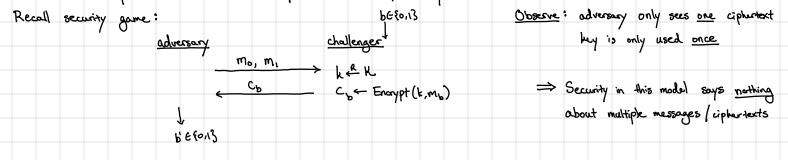
THardness assumptions can be that certain constructions are secure (e.g., "AES is a secure block copy" L> typically for symmetric cryptography

L> constructions are more ad hoc, rely on heuristics, but very fast in practice

Examples of stream ciphers (PRGs): designed to be very fast (oftentimes with hardware support) - Linear congruential generator (e.g., rand () function in C) -> typical implementation: Output is a $\Gamma_{i+1} = \alpha r_i + b \pmod{m}$ few bits of ro, r, r2,... (full (value of ro, r1, r2,... never revealed) very simple, easy to implement a,b,m are public constants (especially when m is a power of 2) > or Lri/w] ro is the initial seed have long period Not a cryptographic PRG: NEVER USE rand() TO GENERATE CRYPTOGRAPHIC KEYS? - Civen full outputs, outputs fully predictable (if enough bits of state revealed, can brute force unknown bits) - Even given partial outputs leg., least significant few bits of output) and having secret a, b, m, can still be broken (linear functions are not secure! see Bonel-Shoup Ch. 3.7.1 and related papers) - Often good enough for non-cryptographic applications (e.g., statistical simulation) - Linear feedback shift registers (LFSRs) register state initial state of UFSR determined by the seed) 0 0 0 0 1 0 >> PRG output 111 - very friendly for hardware implementations taps (fixed for the construction) "linear feedback" linear function of register state (addition modulo 2) Each iteration: rightmost bit is output by LFSR

bits at tap positions are xored and shifted in from the left

1 clock cycle = 1 output bit - very simple and fast!


By itself, LFSR is totally broken: after observing n-bits of output, the entine state of the LFSR is known and subsequent bits are completely predictable!

<u>Proposel</u>: Use multiple LFSRs and combine in some non-linear way:

1 bit of (17-bit LFSR -	system) for DVD 8 bits		196] -> actual	CCS and the ha	
40-bit key		17-bit LFSR -	8 bits			CO WINCHERA MI	as a few differences, but
40-bit key			8 bits				
40-bit key			X + X + C (and)		TNL Cot	re attack is w	INTRECTED.
(needed to comply us	25-67	+ LFSR -	X+y+c (mod 2) 8 bits C	carry bit from	Previous ope	creation (initially 0)	
	ith proact cont	tra) restrictions)			1		
- Brus	te-force atta	ck: guess the see	((2 240 time)				
		u better with more					
			a few bytes of	output of the	stream ciple	r and the o	utput of the
			R, can subtract -				
							for the 26-bit LFSR
			output matches or		5		
	L-> Attack no	ow runs in ~2 ¹⁶					
				cover key from	DVD in in	+ ~ 18 seconds .	n 450 MHz processor
	(tətally				Jue		
Other			(A5/1,2 Stream ci	phrs for encryptin	ng GSN ce	Il phone traffic)	
Pre-2000s		hard to k	neo cipher design a	rivete, but eventue	elly reverse en	ninecred and	NSA can process encrypted A5/1 attacks found
			Never rely on s				
						SRs in conjuction	with a 2-bit finite state
			also not secure!				
- RC4			- SSL/TLS protocol,	80211h)			
	apre apre	1					
	128	8-bits initial	PRG seed	Numerous problem		Second Line - N	$1 = \frac{2}{14} > \frac{1}{84}$
		1				Esecond byte = 0	
	2048	-bit internal state					to ignore first 256
						rential bias	
		J C Ber sund		- Correla	ations in ou	tput probability of	seeing $(0,0)$ in output
		per round		م جل		is 2562 + 2	
							keys (e.g., keys sharing
							r keys after seeing
					placks of ou	· · · · · · · · · · · · · · · · · · ·	
						• • ·	weak devices (who may not
					have good	l sources of en	mpy)
			reject: 2004-2008)				
		05) ~> Chalh					
	→ cone de	sign maps 256-	bit key, 64-bit non	ce, 64-bit coun	iter onto a	512-bit output	
				t t			Design is more complex:
			enables using sam		Ilows rendom		- relies on a sequece of rounds
			key land differ	ut nonces)	the stream		-each round consists
			to encrypt <u>mult</u>	iple messages			of 32-bit additions, xors and bit-Shifts
			Lwill discuss lat	2()			
	L⇒ very fast	even in software	(4-14 CPU cycles/	output byte) -	used to en	crypt TLS truffic	between Android and Gogle services

<u>Recull</u>: the one-time pad is not reusable (i.e., the two-time pad is totally broken) NEVER REUSE THE KEY TO A STREAM CIPHER?

But wait... we "proved" that a stream cipher was secure, and yet, there is an attack?

Problem: If we want security with multiple ciphertexts, we need a different or stronger definition (CPA security)

Definition: An encryption scheme TISE = (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) if for all efficient adversaries A:

CPARLU[A, TISE] =
$$\Pr[W_0 = 1] - \Pr[W_1 = 1] = real.$$

challenger

Claim. A stream cipher is not CPA-secure.

Proof. Consider the following adversary:

	Pesars			
adversary	challenger			
choose mo, m, EM	See toily		$P_{r}[b'=1 b=0]=0$	since c' = m₀ ⊕ G(s) = C
where mo \$ m1			$P_{c}[b' = 1 b = 1] = 1$	since c' = m, 🕀 G(s) # C
<u> </u>	→	⇒	CRAAJ [A, TISE] = 1	
$c = m_0 \oplus G(s)$				

$$m_{o}, m_{i}$$

 $c^{t} = m_{b} \oplus G(s)$

output 0 if c=c' output 1 if c≠c'

Observe: Above attack works for any deterministic encryption scheme.

=> CPA-secure encryption must be <u>randomized</u>!

To be reusable, cannot be deterministic. Encrypting the same message twice should not reveal that identical messages were encrypted.

To build a CPA-secure encryption scheme, we will use a "block cipher"

"Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits T Examples include 3DES (key size 168 bits, block size 64 bits)

AES (key size 128 bits, block size 128 bits) block ciphers Will define block ciphers aborractly first: pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) L> General idea: PRFs behave like random functions

PRPs behave like random permutations